С развитием вычислительной техники были разработаны детальные алгоритмы и компьютерные программы идентификации отпечатков пальцев. Созданы специализированные компьютерные сканеры отпечатков пальцев и методы представления их в цифровом виде. Но в течение длительного времени для обработки получаемой информации требовались слишком большие вычислительные ресурсы и применение дорогих сверхбыстродействующих компьютеров. Однако бурное развитие технологии, математики и информатики привело к тому, что стало возможным создание компактных интеллектуальных дактилоскопических сенсоров]. Иногда их называют также "биометрическими". Чувствительным узлом таких сенсоров является узел сканирования, в котором папиллярному узору одного, двух или нескольких пальцев ставится в соответствие последовательность электрических сигналов.
Наиболее распространены сейчас емкостные, потенциальные, тепловые и фоточувствительные сканеры.
Принцип действия емкостных сканеров объясняет рис. 11.18. Поперек рядов плоских микроэлектродов 1 надо провести два-три пальца своих рук (рис. 11.18,а). На рис. 11.18,б эта ситуация показана в вертикальном сечении при значительном увеличении. Емкость между парой близких микроэлектродов в том случае, когда над ней находится выступ кожи, оказывается значительно больше, чем в случае, когда над ней находится канавка. Поэтому, измеряя электроемкость или переменный ток, который течет через соответствующую пару микроэлектродов, можно однозначно определить, какой элемент папиллярного узора находится в данный момент над ней.
Рис. 11.18. Принцип действия емкостного узла сканирования: а) 1 – линейки из пар микроэлектродов; 2 – пальцы, которые протягивают над ними; б) 1 – пара микроэлектродов, 3 – тонкий слой изолятора, 4 – выступ кожи, 5 – канавка между выступами, 6 – основная толща пальца
Действие потенциальных сканеров основано на том, что из-за рельефа кожи электрические потенциалы ее выступов и канавок несколько отличаются. Чтобы выявить и зафиксировать это различие используют одну или несколько линеек МДП транзисторов. Ток через такой транзистор существенно зависит от потенциала на его затворе. А этот потенциал изменяется при переходах от выступов к канавкам и обратно. Когда один, два или три пальца скользят над линейками МДП транзисторов, то ток через каждый из них зависит от того, какая деталь папиллярного узора находится в данный момент над ним, – выступ или канавка. На 0,1 мм узора может приходиться от 2 до 10 чувствительных к потенциалу МДП транзисторов. На том же кристалле с использованием КМДП технологии формируют схемы считывания, фильтрации, предварительной обработки сигналов и их запоминания.
В тепловых сканерах используется тот факт, что тепловое излучение от канавок и впадин кожи несколько отличается. И это отличие "улавливают" ряды элементов, чувствительных к тепловому излучению, над которыми скользят пальцы.
В фоточувствительных сканерах увеличенное изображение папиллярного узора оптически проецируется с увеличением на линейку или матрицу фотоприемников, которые превращают его в последовательность электрических сигналов.
Микропроцессор, входящий в состав дактилоскопического сенсора, не только организует считывание и фильтрацию информации о папиллярном узоре пальцев, но и обрабатывает ее, приводит к стандартной форме. Он же осуществляет сравнение с образцами типовых узоров, хранящихся в его долговременной памяти, и по заданным критериям решает, каким образцам соответствуют исследуемые пальцы. Т.е. он автоматически выполняет ту сложную работу, которую в течение предыдущих столетий могли выполнить лишь высококвалифицированные эксперты.