Моделирование – это замещение одного объекта (оригинала) другим (моделью) и фиксация или изучение свойств оригинала путем исследования свойств модели. Объект (система) определяется совокупностью параметров и характеристик. Множество параметров системы отражает ее внутреннее содержание – структуру и принципы функционирования. Характеристики системы – это ее внешние свойства, которые важны при взаимодействии с другими системами. Характеристики системы находятся в функциональной зависимости от ее параметров.
Теория моделирования представляет собой взаимосвязанную совокупность положений, определений, методов и средств создания и изучения моделей. Эти положения, определения, методы и средства, как и сами модели, являются предметом теории моделирования.
Основная задача теории моделирования заключается в том, чтобы вооружить исследователей технологией создания таких моделей, которые достаточно точно и полно фиксируют интересующие свойства оригиналов, проще или быстрее поддаются исследованию и допускают перенесение его результатов на оригиналы.
Трудно переоценить роль моделирования в научных изысканиях, инженерном творчестве и, вообще, в жизни человека. Разработка и познание любой системы сводится по существу, к созданию ее модели. Особую ценность имеют конструктивные модели, то есть такие, которые допускают не только фиксацию свойств, но и исследование зависимостей характеристик от параметров системы. Такие модели позволяют оптимизировать функционирование систем.
При изложении теоретических знаний по данной дисциплине предлагаются наиболее известные в литературе методы и средства моделирования. Выбор методов осуществлялся также с точки зрения возможности их применения для исследования вычислительных систем (ВС). В качестве примеров при изложении материала также, как правило, выступают ВС различного назначения и их компоненты.
Модель объекта – это физическая или абстрактная система, адекватно представляющая объект исследования. В теории моделирования используются преимущественно абстрактные модели – описания объекта исследования на некотором языке. Абстрактность модели проявляется в том, что компонентами модели являются не физические элементы, а понятия, в качестве которых наиболее широко используются математические. Абстрактная модель, представленная на языке математических отношений, называется математической моделью. Математическая модель имеет форму функциональной зависимости , где и - соответственно характеристики и параметры моделируемой системы, а - функция, воспроизводимая моделью. Построение модели сводится к выявлению функции и представлению ее в форме, пригодной для вычисления значений . Модель позволяет оценивать характеристики для заданных параметров и выбирать значения параметров, обеспечивающие требуемые характеристики, с использованием процедур оптимизации.
Модель может воспроизводить полную совокупность свойств системы либо их подмножество. Состав свойств устанавливается в зависимости от цели исследований и при построении модели определяет:
- состав воспроизводимых характеристик ;
- состав параметров , изменение которых должно влиять на характеристики ;
- область изменения параметров , - область определения модели;
- точность – предельная допустимая погрешность оценки характеристик на основе модели.
Состав характеристик определяется в зависимости от исследуемых свойств системы – производительности, надежности, стоимости и других свойств и должен гарантировать полноту отображения этих свойств. Состав параметров должен охватывать все существенные аспекты организации системы, изучение влияния которых на качество функционирования составляет цель исследования, производимого с помощью модели.
Область определения модели характеризует диапазон исследуемых вариантов организации системы. Чем шире состав характеристик и параметров, а также область определения модели, тем универсальнее модель в отношении задач, которые можно решать с ее использованием.
Допустимые погрешности оценки характеристик и точность задания параметров определяют требования к точности модели. Так, если изменения характеристик в пределах 10% несущественны для выбора того или иного варианта системы, то точность определения характеристик должна составлять 5%. В большинстве случаев параметры, и в первую очередь параметры рабочей нагрузки, могут быть заданы лишь приближенно, с относительной погрешностью 10-25%. В таких случаях нет смысла предъявлять высокие требования к точности воспроизведения моделью характеристик системы и погрешности их оценки на уровне 5-15% вполне приемлемы.
Модель, удовлетворяющая вышеперечисленным требованиям по составу характеристик и параметров и точности воспроизведения характеристик по всей области определения, называется адекватной системе.
Существенное влияние на адекватность оказывает область определения модели. Практически любая модель обеспечивает высокую точность воспроизведения характеристик в пределах малой окрестности точки . Чем шире область определения модели, тем меньше шансов, что некоторая модель окажется адекватной системе.
Другое свойство модели – сложность. Сложность модели принято характеризовать двумя показателями: размерностью и сложностью вычислений, связанных с определением характеристик. Размерность модели – число величин, представляющих в модели параметры и характеристики. Сложность вычислений, выполняемых при расчете характеристик , оценивается числом операций, приходящихся на одну реализацию оператора . Обычно сложность вычислений связывается с затратами ресурсов ЭВМ и характеризуется числом процессорных операций и емкостью памяти для хранения информации, относящейся к модели. Сложность вычислений – монотонно возрастающая функция размерности модели. Поэтому более сложной модели присущи одновременно большая размерность и сложность вычислений.
Сложность модели определяется также сложностью моделируемой системы и назначением модели (состав характеристик и параметров, воспроизводимых моделью), размером области определения и точностью модели. Чем сложнее система, то есть чем больше число входящих в нее элементов и процессов, из которых слагается функционирование системы, тем сложнее модель.
Увеличение числа воспроизводимых характеристик и параметров, области определения и точности оценки характеристик приводят к увеличению сложности модели.
См. также: