J.T. Olеsberg из университета штата Айова вместе со своими сотрудниками надеялся достичь успеха, работая в третьем "окне прозрачности" воды, т.е. в диапазоне длин волны от 2 до 2,5 мкм], где имеются три характерных пика поглощения глюкозы, показанных на рис. 20.3. Вдоль горизонтали здесь отложена длина волны в мкм, а по вертикали – разность оптических плотностей 1 мм слоя раствора глюкозы и чистой воды
| (20.1)
|
Рис. 20.3. Спектр поглощения 5-милимолярного раствора глюкозы в воде
Т.е. это – т.н. "дифференциальный спектр поглощения глюкозы". Вертикальная шкала (Аbsorbance) проградуирована в единицах оптической плотности . Напомним, что 1 (Absorpbance Unity) – это оптическая плотность такого слоя, при которой десятичный логарифм пропускания слоя , т.е. свет ослабляется таким слоем в 10 раз. Единица . При тех длинах волны, при которых раствор глюкозы поглощает свет сильней, чем вода, . А там, где поглощение раствора глюкозы слабей, чем поглощение чистой воды, имеем .
На рис. 20.3 стрелками указаны 3 максимума поглощения. В наибольшем из них (на длине волны 2,12 мкм) . Поскольку , то пропускание 1 мм слоя 5-милимолярного раствора глюкозы примерно лишь на 0,1 % больше пропускания чистой воды. И все же, используя специальные алгоритмы (partial least squаres regression) для выделения вклада в эти спектры именно глюкозы, разработчикам удалось измерять концентрацию глюкозы в модельных растворах глюкозы с разными фоновыми веществами. Хотя вода в этом окне прозрачности уже довольно сильно поглощает (слой воды толщиной 1 мм ослабляет свет в 40-50 раз), разработчики преодолели это препятствие, используя новейший БИК полупроводниковый лазер, разработанный в Fraunhofer-Instituts fur Angewandte Festkorperphysik (Freiburg, ФРГ, способный изменять длину волны излучения. Изучение публикаций разработчиков показало, что и они недостаточно понимали разницу между концентрацией глюкозы в крови человека и измеряемой спектрофотометрическим методом средней концентрацией глюкозы в участке тела, который просвечивается светом. Пока что никаких сообщений разработчиков об испытаниях созданного сенсора на реальных объектах, к сожалению, нет.
Приблизительно такие же результаты для указанного участка спектра поглощения глюкозы приведены и в работе. Авторы этой работы тоже надеялись достичь успеха, используя дифференциальные спектры поглощения БИК света. Для быстрого получения спектра пропускания использовался перенастраиваемый акустооптический осцилляторный фильтр (acousto-optic variable oscillation tunable filter). Это позволило использовать весь арсенал непрерывных методов селекции слабого сигнала глюкозы. Но о решающих успехах на реальных объектах и эти разработчики тоже пока и не сообщали.
Фирмы Foviopitics Inc. (Lexington, Kentucky, США:) и Visionary Medical Products Corporation (Reno, Nevada) сообщили о проводимой ими разработке неинвазивного спектрофотометрического сенсора глюкозы, использующего "естественное окно для доступа света к крови" – человеческий глаз. Речь идет о зондировании светом определенных длин волны, об измерении и анализе спектральных интенсивностей света, отраженного от богатой кровеносными сосудами сетчатки глаза. Методы расчета концентрации глюкозы в крови на основе анализа отраженного света пока не раскрывались, так как являются предметом патентования.
Фирма Infratec Inc. (Wilton, Connecticut, США) разрабатывает спектрофотометрический сенсор глюкозы, в котором для измерений используется не внешний свет, а собственное инфракрасное тепловое излучение самих биологических тканей. В области длин волны от 8 до 14 мкм (средняя ИК область спектра) были выявлены характерные полосы теплового излучения глюкозы при 9,6 мкм и 10,9 мкм. Используя методы и достижения термоэмиссионной спектрофотометрии и возможности микроминиатюризации, разработчикам удалось вместить чувствительную часть прибора в габариты крохотной капсулы. Ее вставляют пациенту в слуховой канал уха и измеряют тепловое излучение на указанных длинах волны от барабанной перепонки, которая давно считается одной из наиболее термостабильных частей человеческого тела. Сообщено, что предварительные медицинские испытания показали возможность измерять КГК в диапазоне от 30 до 300 мг % с относительной погрешностью примерно 12 %.