Принцип действия и конструкция первого интеллектуального неинвазивного гемоглобиномера – сенсора, предназначенного для измерения концентрации гемоглобина, были запатентованы в 1994 г.. Структура его оптоэлектронной части показана на рис. 19.8.
В середине 90-х годов еще не было достаточно узкополосных сине-зеленых светодиодов, излучающих свет в нужных для гемоглобиномера спектральных интервалах. Поэтому в качестве источника света использовалась миниатюрная импульсная лампа-вспышка (1) высокого давления для фотоаппаратов, располагавшаяся из соображений электробезопасности внутри корпуса прибора. (Для работы лампы требовалось напряжение до 300 В, а сила разрядного тока в коротком миллисекундном импульсе достигала 50 А).
Рис. 19.8. Оптоэлектронная часть неинвазивного гемоглобиномера "ИГН-300": 1 - миниатюрная лампа-вспышка; 2 - вспомогательный светофильтр; 3 - световод зондирующего пучка; 4 - плоскость выхода световодов; 5 - световод опорного пучка; 6 - световод измерительного пучка; 7 - сине-зеленый светофильтр; 8 - фотоприемник измерительного канала; 9 - БИК светофильтр; 10 - фотоприемник опорного канала; 11 - условно показан путь света сквозь исследуемый участок тела
Лампа-вспышка излучает свет непрерывного спектра в диапазоне длин волны приблизительно от 300 до 1300 нм. Коротковолновая часть спектра (до 450 нм) сразу отсекалась вспомогательным светофильтром (2). Остальной свет с помощью пучка оптических волокон (3) направлялся к исследуемому участку тела человека. Из обратно рассеянного телом света с помощью волоконно-оптических световодов (5) и (6) отбирались симметрично расположенные пучки, выходящие из тела на расстоянии 1,5 мм от места входа зондирующего светового пучка перпендикулярно поверхности тела. Для этого волоконно-оптические световоды 3, 5 и 6 были выведены торцами в общую плоскость (4). Расстояние между ними было конструктивно фиксировано, плоскость 4 сошлифована и оптически отполирована. Отобранные для измерений пучки обратно рассеянного телом света через волоконно-оптические световоды 5 и 6 направлялись к опорному и измерительному каналам. В измерительном канале перед фотоприемником (8) был установлен узкополосный интерференционный светофильтр (7), который пропускал на фотоприемник только излучение узкого спектрального интервала из сине-зелёной области спектра. В опорном канале перед фотоприемником (10) был установлен узкополосный интерференционный светофильтр (9), который пропускал на фотоприемник только излучение узкого спектрального интервала из ближней инфракрасной области спектра.
При измерениях т.н. "общего ( total ) гемоглобина крови" результат измерения не должен зависеть от насыщенности крови кислородом. Поэтому длина волны света , пропускаемого светофильтром 7 в измерительном канале была выбрана так, чтобы коэффициенты поглощения двух главных форм гемоглобина совпадали. Изучение показало, что для этого пригодны такие спектральные интервалы: (506,5 7) нм, (523 7) нм, (549 7) нм, (569 7) нм, (586 7) нм. Опорная длина волны была выбрана между 830 и 960 нм, где все формы гемоглобина, как и другие компоненты крови и живой ткани, поглощают свет относительно слабо. Рассеяние и фоновое поглощение света на обеих указанных длинах волны приблизительно одинаковы.
Для фильтрации полезных сигналов от помех, кроме оптических интерференционных светофильтров, использован тот факт, что излучение света лампой-вспышкой длится лишь несколько миллисекунд. Усиленные сигналы от фотоприемников с помощью операционных усилителей интегрировались на конденсаторах. Интегрирование в обоих каналах прекращалось, когда напряжение на конденсаторе в опорном канале достигало заданного порога. Поэтому светосумма, набранная в опорном канале, всегда была одинакова. Если пропускание кожи было меньше обычного, например, из-за пигментации или загара, то интегрирование продолжалось дольше, а в случае более прозрачной кожи время интегрирования автоматически сокращалось. Тем самым компенсировалось и влияние флуктуаций интенсивности излучения лампы-вспышки. Благодаря интегрированию в течение порядка 1 мс, автоматически отфильтровывались шумы и помехи с частотами выше 3 кГц.
Воспроизводимость результатов измерений на одном и том же участке тела одного и того же человека иллюстрирует рис. 19.9, где показаны результаты 60 проведенных подряд измерений. По горизонтали отложены измеренные значения, по вертикали – количество полученных результатов из выделенного диапазона значений (от 130 до 132, от 132 до 134 и т.д.). Приблизительно гауссовское распределение свидетельствует о случайном характере разброса результатов.
Рис. 19.9. Гистограмма результатов неинвазивных измерений концентрации гемоглобина сенсором ИГН-300 на руке человека
Дисперсия отклонений не превышала 5-7 % от среднего значения. Сенсор хорошо отслеживал изменения концентрации гемоглобина в ткани, вызванные различными факторами: приливами и оттоками крови, повышением (понижением) артериального давления, уменьшением (повышением) концентрации гемоглобина в крови, вызванным, например, кровотечением или внутривенным вливанием крови, и т.д.