русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

УЗ-сенсоры расстояния

<== предыдущая статья | следующая статья ==>

Одним из применений эхолокации уже не в воде, а в воздухе, является УЗ выявление присутствия объекта в контролируемой зоне и измерение расстояния до него. Особенно важным становится это в сложных условиях густого тумана, задымленности, запыленности и т.п., когда оптические методы "работают" плохо. А для УЗ волн это всё – не помеха. В качестве источника ультразвука чаще всего применяют пьезоэлектрические преобразователи.

Некоторые типы промышленно выпускаемых УЗ сенсоров расстояния показаны на рис. 7.1.

Рис. 7.1. Некоторые промышленные УЗ сенсоры расстояния

 

Излучатель и приемник УЗ волн находятся в одном корпусе вместе с необходимой для измерений электроникой и с элементами, обеспечивающими направленность – концентрацию излучаемых и принимаемых УЗ волн в определенном секторе пространства. УЗ волны с частотой 65–400 кГц в виде кратковременного импульса излучаются в направлении контролируемой зоны 10–200 раз каждую секунду. Если в контролируемой зоне появляется объект, то отраженная или рассеянная от него УЗ волна возвращается назад к сенсору и воспринимается приемником с некоторым запаздыванием. По измеренному времени запаздывания рассчитывается расстояние до объекта

Если в состав УЗ сенсора входит микрокомпьютер, то благодаря встроенным датчикам температуры и давления легко решается вопрос коррекции результатов произведенных измерений с учетом зависимости скорости распространения УЗ волны в воздухе от указанных параметров.

Если частота УЗ колебаний фиксирована, то с помощью таких сенсоров можно определять и скорость движения объекта, измеряя доплеровский сдвиг частоты отраженной волны.

Если угловая диаграмма направленности УЗ сенсора достаточно узка (а это зависит от конструкции корпуса и наличия параболического или сферического рефлекторов) то, постепенно поворачивая его в определенном угловом секторе, можно, как и в гидролокаторах, сканировать УЗ зондом и осматривать более значительную зону пространства.

Для выявления вхождения в контролируемую зону пространства некоторого объекта промышленность выпускает также УЗ сенсоры, состоящие из двух отдельных частей – излучателя и приемника. Некоторые типы таких УЗ сенсоров показаны на рис. 7.2, где слева внизу приведена и общая схема взаимного расположения излучателя 1 и приемника 2.

На рисунке выделена "зона чувствительности" 3, – та часть пространства, в которой перекрываются конус распространения УЗ волн от излучателя и область, из которой УЗ излучение воспринимается приемником 2. Если в этой зоне нет объектов, то сигнал на выходе приемника слабый. Если же какой-либо объект 4 входит в эту зону, то он начинает рассеивать зондирующие УЗ волны, и сигнал на выходе приёмника 2 резко возрастает. По времени запаздывания принятого сигнала относительно излучаемого можно определить, на каком расстоянии в зоне чувствительности 3 находится объект 4, а по изменению частоты колебаний или по изменению положения объекта от одного зондирующего импульса к другому, – с какой скоростью он двигается. Взаимное расположение излучателя 1 и приемника 2 и угол между их осями можно изменять в зависимости от потребности.


Рис. 7.2. Примеры УЗ сенсоров, состоящих из двух частей

 

На рис. 7.3 приведена фотография УЗ измерителя уровня жидкости в закрытых резервуарах Omni-L. Уровень жидкости определяется с точностью порядка 1 мм по времени запаздывания отраженного от поверхности жидкости УЗ импульса.


Рис. 7.3. УЗ измеритель уровня жидкости Omni-L

 

Много специализированных интеллектуальных акустических сенсоров созданы и применяются для дефектоскопии металлических заготовок (проката, отливок, ...) и готовых металлоконструкций. В основе их работы тоже лежит принцип эхолокации, но уже в твердых телах. В каких-то местах металлической конструкции возбуждаются УЗ колебания, в других – установлены приёмники УЗ волн. Принятые ими УЗ колебания подвергаются математическому анализу в микрокомпьютере. По результатам анализа можно определить механическое состояние конструкции. Такие специализированные интеллектуальные акустические сенсоры позволяют своевременно обнаруживать трещины, пустоты, посторонние включения и другие дефекты в металлических изделиях, явления "усталости" металлов, нежелательные механические изменения в конструкциях и предотвращать возможные аварии. В случае возникновения повреждений трубопроводов, бесстыковых рельсов сверхскоростных железных дорог и т.д. интеллектуальные УЗ акустические сенсоры позволяют быстро локализовать место повреждения и восстановить функционирование этих важных магистралей.

   

Просмотров: 2010

<== предыдущая статья | следующая статья ==>

Это будем вам полезно:

Электрокинетический метод

Методы и средства измерения количества тепла

Особенности современного этапа развития методов и средств измеренй

Возможности ССП в горном деле

Пучок наиболее вероятных траекторий света

Автоматические электронные тонометры

Микромеханические гироскопы-акселерометры

Инкрементные энкодеры

Монолитные кремниевые гироскопы

Поршневые (золотниковые) расходомеры

Высокотемпературные пирометры частичного излучения

Интеллектуальный сенсор для неинвазивного исследования микроциркуляторного русла системы кровообращения

Непрерывные методы и средства измерения плотности газообразных сред

Cпектрофотометрические сенсоры как один из видов оптических сенсоров

Вернуться в оглавление:Методы и средства измерений неэлектрических величин




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.