русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вычеслениес помощью определенного интеграла площади плоской фигуры.


Дата добавления: 2015-01-16; просмотров: 717; Нарушение авторских прав


С помощью определенного интеграла можно вычислять площади плоских фигур, так как эта задача всегда сводится к вычислению площадей криволинейных трапеций.

Площадь всякой фигуры в прямоугольной системе координат может быть составлена из площадей криволинейных трапеций, прилегающих к оси Ох или к оси Оу.

Задачи на вычисление площадей плоских фигур удобно решать по следующему плану:

1. По условию задачи сделать схематический чертеж

2. Представить искомую площадь как сумму или разность площадей криволинейных трапеций. Из условия задачи и чертежа определяют пределы интегрирования для каждой составляющей криволинейной трапеции.

3. Записывают каждую функцию в виде y = f(x).

4. Вычисляют площади каждой криволинейной трапеции и площадь искомой фигуры.

Рассмотрим несколько вариантов расположения фигур.

 

1). Пусть на отрезке [a; b] функция f(x) принимает неотрицательные значения. Тогда график функции y = f(x)расположен над осью Ох.

 

 

Площадь такой фигуры вычисляется по формуле: S =

 

 

2). Пусть на отрезке [a; b] неположительная непрерывная функция f(x). Тогда график функции y = f(x) расположен под осью Ох:

 

Площадь такой фигуры вычисляется по формуле:S = -

3)

 

Площадь такой фигуры вычисляется по формуле:S =

4). Пусть на отрезке [a; b] функция f(x) принимает как положительные, так и отрицательные значения. Тогда отрезок [a; b] нужно разбить на такие части, в каждой из которых функция не изменяет знак, затем по приведенным выше формулам вычислить соответствующие этим частям площади и найденные площади сложить.

S1 = S2 = - Sф = S1 + S2



<== предыдущая лекция | следующая лекция ==>
Полное приращение функции двух переменных.Полный дифференциал функции нескольких переменных. | Приближенные вычисления с помощью полного дифференциала.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.