С помощью определенного интеграла можно вычислять площади плоских фигур, так как эта задача всегда сводится к вычислению площадей криволинейных трапеций.
Площадь всякой фигуры в прямоугольной системе координат может быть составлена из площадей криволинейных трапеций, прилегающих к оси Ох или к оси Оу.
Задачи на вычисление площадей плоских фигур удобно решать по следующему плану:
1. По условию задачи сделать схематический чертеж
2. Представить искомую площадь как сумму или разность площадей криволинейных трапеций. Из условия задачи и чертежа определяют пределы интегрирования для каждой составляющей криволинейной трапеции.
3. Записывают каждую функцию в виде y = f(x).
4. Вычисляют площади каждой криволинейной трапеции и площадь искомой фигуры.
Рассмотрим несколько вариантов расположения фигур.
1). Пусть на отрезке [a; b] функция f(x) принимает неотрицательные значения. Тогда график функции y = f(x)расположен над осью Ох.

Площадь такой фигуры вычисляется по формуле: S = 
2). Пусть на отрезке [a; b] неположительная непрерывная функция f(x). Тогда график функции y = f(x) расположен под осью Ох:

Площадь такой фигуры вычисляется по формуле:S = - 
3)

Площадь такой фигуры вычисляется по формуле:S = 
4). Пусть на отрезке [a; b] функция f(x) принимает как положительные, так и отрицательные значения. Тогда отрезок [a; b] нужно разбить на такие части, в каждой из которых функция не изменяет знак, затем по приведенным выше формулам вычислить соответствующие этим частям площади и найденные площади сложить.

S1 =
S2 = -
Sф = S1 + S2