русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Свойства двойных интегралов.


Дата добавления: 2015-01-16; просмотров: 539; Нарушение авторских прав


Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y). Двойной интеграл от функции f (x,y) обозначается как

где R - область интегрирования в плоскости Oxy. Если определенный интеграл от функции одной переменной выражает площадь под кривой f (x) в интервале от x = a до x = b, то двойной интеграл выражает объем под поверхностью z = f (x,y) выше плоскости Oxy в области интегрирования R

Формально двойной интеграл можно ввести как предел суммы Римана. Пусть, для простоты, область интегрирования R представляет собой прямоугольник (рисунок 2). Используя ряд чисел{ x0, x1, ..., xm }, разобьем отрезок [a, b] на малые интервалы таким образом, чтобы выполнялось соотношение

Аналогично, пусть множество чисел является разбиением отрезка [c, d] вдоль оси Oy, при котором справедливы неравенства

Суммой Римана функции f (x,y) над разбиением называется выражение

где - некоторая точка в прямоугольнике и .

Двойной интеграл от функции f (x,y) в прямоугольной области определяется как предел суммы Римана, при котором максимальные значения Δxi и Δyj стремятся к нулю:


Чтобы определить двойной интеграл в произвольной области R, отличной от прямоугольной, выберем прямоугольник , покрывающий область R (рисунок 3), и введем функцию g (x,y), такую, что

Тогда двойной интеграл от функции f (x,y) в произвольной области R определяется как



<== предыдущая лекция | следующая лекция ==>
Условный экстремум. Метод множителей Лагранжа. | Свойства двойного интеграла


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.