русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Площадь поверхности вращения


Дата добавления: 2015-01-16; просмотров: 1995; Нарушение авторских прав


Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — однополостныйгиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых. Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Гюльдена, или теоремой Паппа о центроиде.

Площадь поверхности вращения, образованной вращением кривой вокруг оси можно вычислить по формуле


Площадь поверхности вращения, образованной вращением кривой вокруг оси можно вычислить по формуле

Для случая, когда кривая задана в полярной системе координат действительна формула

Механические приложения определённого интеграла (работа сил, статические моменты, центр тяжести).

Вычисление работы сил

 

 

Материальная точка движется по непрерывно дифференцируемой кривой, при этом на нее действует сила, направленная по касательной к траектории в направлении движения. Полная работа, совершаeмая силой F(s):

 

 

Если положение точки на траектории движения описывается другим параметром, то формула приобретает вид:

 

 


Вычисление статических моментов и центра тяжести
Пусть на координатной плоскости Оху некоторая масса М распределена с плотностью р = р(у) на некотором множестве точек S (это может быть дуга кривой или ограниченная плоская фигура). Обозначим s(у) - меру указанного множества (длина дуги или площадь).



Определение 2. Число называется k-м моментом массы М относительно оси Ох.
При k = 0 М0 = М - масса,
k = 1 М1 - статический момент,
k = 2 М2 - момент инерции.

Аналогично вводятся моменты относительно оси Оу. В пространстве подобным же образом вводятся понятия моментов массы относительно координатных плоскостей.
Если р = 1, то соoтветствующие моменты называются геометрическими. Координаты центра тяжести однородной (р - const) плоской фигуры определяются по формулам:

 

 

где М1y, М1x - геометрические статические моменты фигуры относительно осей Оу и Ox; S - площадь фигуры.



<== предыдущая лекция | следующая лекция ==>
Объем тела вращения. | N-мерное евклидово пространство.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.