русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Площадь криволинейного сектора и сегмента.


Дата добавления: 2015-01-16; просмотров: 996; Нарушение авторских прав


Пусть кривая L задана в полярной системе координат уравнением r = r(θ), αθβ (см. Рис. 3), причем функция r(θ) непрерывна и неотрицательна на сегменте [α, β]. Плоскую фигуру, ограниченную кривой L и двумя лучами, составляющими с полярной осью углы α и β, будем называть криволинейным сектором.

Докажем следующее утверждение. Криволинейный сектор представляет собой квадрируемую фигуру, площадь P которой может быть вычислена по формуле

(2)

Доказательство. Рассмотрим разбиение T сегмента [α, β] точками α = θ0 < θ1 < ... < θn = β и для каждого частичного сегмента [θi-1, θi] построим круговые секторы, радиусы которых равны минимальному ri и максимальному Ri значениям r(θ) на сегменте [θi-1, θi]. В результате получим две веерообразные фигуры, первая из которых содержится в криволинейном секторе, а вторая содержит криволинейный сектор (эти веерообразные фигуры изображены на Рис. 3). Площади и указанных веерообразных фигур равны соответственно и . Отметим, что первая из этих сумм является нижней суммой s для функции для указанного разбиения T сегмента [α, β], а вторая сумма является верхней суммой S для этой же функции и этого же разбиения. Так как функция интегрируема на сегменте [α, β], то разность может быть как угодно малой. Например, для любого фиксированного ε > 0 эта разность может быть сделана меньше ε/2. Впишем теперь во внутреннюю веерообразную фигуру многоугольник Qi с площадью Si, для которого , и опишем вокруг внешней веерообразной фигуры многоугольник Qd площадью Sd, для которого *. Очевидно, первый из этих многоугольников вписан в криволинейный сектор, а второй описан вокруг него. Так как справедливы неравенства



(3)

то, очевидно, Sd - Si < ε. В силу произвольности ε, отсюда вытекает квадрируемость криволинейного сектора. Из неравенств (3) вытекает справедливость формулы (2).

Площадь криволинейного сектора и сегмента

Площадь сектора, ограниченного непрерывной кривой r = r( ) и лучами = ; = ( < ), равна

Площадь сегмента, ограниченного непрерывными кривыми r = r( ) и р = р( ) и лучами = ; = ( < ), равна



<== предыдущая лекция | следующая лекция ==>
Вычисление площади фигуры, ограниченной параметрически заданной кривой. | Объем тела вращения.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.