русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вычисление площади фигуры, ограниченной параметрически заданной кривой.


Дата добавления: 2015-01-16; просмотров: 2152; Нарушение авторских прав


 

При выяснении геометрического смысла определенного интеграла, мы получили формулу для нахождения площади криволинейной трапеции, ограниченной осью Ох, прямыми x = a, x = b и непрерывной неотрицательной (неположительной) функцией y = f(x). В некоторых случаях функцию, которая ограничивает фигуру, удобно задать в параметрическом виде, то есть, представить функциональную зависимость через параметр t. В этой статье мы разберемся, как находить площадь фигуры в случае параметрического задания ограничивающей кривой.


После краткого обзора теории и вывода формулы, мы подробно рассмотрим решение характерных примеров на нахождение площади.


Пусть границами криволинейной трапеции являются прямые x = a, x = b, ось абсцисс и параметрически заданная кривая , причем функции и непрерывны на интервале , монотонно возрастает на нем и .

Тогда площадь криволинейной трапеции находится по формуле .


Эта формула получается из формулы площади криволинейной трапеции подстановкой :


Если функция является монотонно убывающей на интервале , то формула примет вид .


Если функция не является основной элементарной, то для выяснения ее возрастания или убывания может потребоваться теория из раздела возрастание и убывание функции на интервале.

 



<== предыдущая лекция | следующая лекция ==>
Интеграл с бесконечными пределами. | Площадь криволинейного сектора и сегмента.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.