русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Монотонность и экстремумы функции.


Дата добавления: 2015-01-16; просмотров: 605; Нарушение авторских прав


Функция называется возрастающей если большему значению аргумента соответствует большее значение функции, а меньшему соответствует меньше.

Функция называется убывающей если большему значению аргумента соответствует меньшее значение функции, а меньшему соответствует большее.

Теорема. У возрастающей функции производная больше 0 ( ).

Доказательство:

 

Экстремумы функции.

Точка -называется точкой max, если существует некоторая окрестность точки, что для любой точки x из этой окрестности .

Точка -называется точкой min, если существует некоторая окрестность точки, что для любой точки x из этой окрестности .

Необходимый признак экстремума, если -точка экстремума.

Если и , то это точка экстремума.

Если - точка экстремума и существует , то производная =0. Точка, в которой производная, равна нулю, называется критической точкой.

, теорема Логранжа.

Первый достаточный признак экстремума.

Если при переходе через критическую точку производная меняет знак с ”+” на “-“,то в этой точке максимум.

Если при переходе через критическую точку производная меняет знак с ”-” на “+“,то в этой точке минимум.

Второй достаточный признак экстремума.

Если в критической точке 2-ая производная больше нуля, то это точка минимума, а если в критической точке 2-ая производная меньше нуля, то это точка максимума.

Пример:



<== предыдущая лекция | следующая лекция ==>
Остаточный член | Промежутки выпуклости.7.точка перегиба.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.