русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Формула Тейлора.


Дата добавления: 2015-01-16; просмотров: 580; Нарушение авторских прав


Пусть функция y= f(x) задана на (a, b) и x0 Î (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x0 можно заменить более легкой задачей вычисления значений P(x).

Пусть искомый многочлен имеет степень n P(x) = Pn(x). Будем искать его в виде

(1)


В этом равенстве нам нужно найти коэффициенты .

Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:

Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена Pn(x) исходя из условия равенства производных.

Введем обозначение n! = 1·2·3…n, 0! = 1, 1! = 1.

Подставим в (1) x = x0 и найдем , но с другой стороны . Поэтому

Далее найдем производную и вычислим Следовательно, .

Учитывая третье условие и то, что

,

получим , т.е. .

Далее . Значит, , т.е. .

Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n-ым остаточным членом функции f(x) в точке x0. Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x0 Î (a, b) при всех x Î (a, b) существует производная f (n+1)(x), то для произвольной точки x Î (a, b) существует точка, лежащая между x0 и x такая, что остаток можно представить в виде:

Это так называемая формула Лагранжа для остаточного члена.

Формула

где x Î (x0, x) называется формулой Тейлора.

Если в этой формуле положить x0 = 0, то она запишется в виде

где x Î ( x0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.



 



<== предыдущая лекция | следующая лекция ==>
Раскрытие неопределённости по правилу Лопиталя. | Формула Маклорена.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.