русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Применяя формулу (1), получим


Дата добавления: 2015-01-16; просмотров: 586; Нарушение авторских прав


 

Следовательно,

 

4) Площадь грани А1 А2 А3 равна половине площади параллелограмма, построенного на векторах и . Обозначим через вектор векторное произведение векторов и , тогда площадь параллелограмма , а площадь грани

Координаты вектора найдем по формуле (3):

 

(11; 2; 10)

 

кв. ед.

5) Объем пирамиды V в шесть раз меньше объема параллелепипеда V1, построенного на трех некомпланарных векторах, и равен абсолютной величине их смешанного произведения. Вычислим смешанное произведение :

 

 

Следовательно, V1 параллелепипеда равен 144 куб. ед., а объем заданной пирамиды V = 144/6 =24 куб. ед.

6) Уравнение прямой, проходящей через две заданные точки А11, y1, z1) и А22, y2, z2) имеет вид

 

(7)

 

Подставив в (7) координаты точек А1 и А2, получим

 

 

7) Уравнение плоскости А1А2А3 – это уравнение грани А1А2А3, которое найдено в п.3:

 

А1А2А3 : 2х – у – 2z – 3 = 0

 

8) Уравнение высоты, опущенной из вершины А4 на грань А1А2А3 – это перпендикуляр А4Д. Каноническое уравнение прямой в пространстве имеет вид

 

(8)

 

где х0, у0, z0 – координаты точки, через которую проходит прямая (8), а m, n, p – направляющие коэффициенты этой прямой. По условию прямая проходит через точку А4(0; 1; 4) и перпендикулярные грани А!А2А3 для которой (2; -1; -2), т.е. подставив эти данные в формулу (8), получаем

- уравнение высоты А4Д

Пример 3. Данную систему уравнений:

 

решить по формулам Крамера (через определитель) и средствами матричного исчисления (с помощью обратной матрицы).

Решение.

Обозначим через А матрицу коэффициентов при неизвестных;

Х – матрицу - столбец неизвестных х1, х2, х3;

В – матрицу – столбец свободных членов:



 

 

С учетом этих обозначений данная система уравнений примет следующую матричную форму:

 

(1)

 

Если матрица А невырожденная (ее определитель ), то она имеет обратную матрицу А-1. умножив обе части уравнения (1) на А-1 , получим:

 

,

 

но - единичная матрица, а ЕХ = Х, поэтому

 

(2)

 

Равенство (2) называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо выписать обратную матрицу А-1.

Пусть имеем невырожденную матрицу и ее определитель равен Δ, тогда где Aij (i = 1,2,3; j = 1,2,3) – алгебраическое дополнение элемента aij в определителе матрицы А и

 

где Mijминор (определитель) второго порядка, полученный вычеркиванием i –й строки и j – го столбца в определителе матрицы А.

Вычислим определитель Δ и алгебраические дополнения Aij элементов матрицы А.

 

 

следовательно матрица А невырожденная и имеет обратную матрицу А-1.

 

тогда

По формуле (2) находим решение данной системы уравнений в матричной форме:

 

 

отсюда х1=3, х2=0, х3=-2.

Если определитель системы уравнений то такая система уравнений имеет одно определенное решение, получаемое по формулам

 

(3)

 

Формулы (3) называются формулами Крамера , где Δхi получается заменой i-го столбца в главном определителе Δ столбцом свободных членов .

Если определитель системы Δ=0 и по крайней мере один из определителей , то такая система уравнений не имеет решения. Если же Δ=0 и все Δхi=0, то данная система уравнений либо не имеет решения, либо имеет бесчисленное множество решений.

Определитель данной системы .

Вычислим вспомогательные определители:

Применяя формулы (3), находим:


Пример 4.Решить систему методом Гаусса

 

Решение.

Составим по данной системе расширенную матрицу

 

 

умножим первую строку на и сложим со второй строкой и с четвертой строкой; умножим первую строку на и сложим с третьей строкой, получим

 

 

поменяем местами вторую и третью строки

 

 

умножим вторую строку на 7 и сложим с четвертой строкой

 

 

умножим третью строку на 31, а четвертую на 8 и сложим эти строки

 

 

разделим последнюю строку на 2

 

 

От ступенчатого вида матрицы переходим к системе

 

 

т.е. обратным ходом Гаусса находим все переменные.

 



<== предыдущая лекция | следующая лекция ==>
Элементы линейной алгебры и аналитической геометрии. | Введение в математический анализ.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.