русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Введение в математический анализ.


Дата добавления: 2015-01-16; просмотров: 1549; Нарушение авторских прав


Пример 1. Найти пределы функции не пользуясь правилом Лопиталя:

Решение.

а) Под знаком предела имеется дробная рациональная функция и при х→∞ получается неопределенность вида . Чтобы найти предел дробной рациональной функции при х→∞, необходимо предварительно числитель и знаменатель дроби разделить на хn, где n – наивысшая степень многочленов Р(х) и Q(x). Разделим числитель и знаменатель данной дроби на х2 и применим основные теоремы о пределах и свойствах бесконечно малых величин:

б) Непосредственная подстановка предельного значения аргумента х=2 приводит к неопределенности вида . Чтобы раскрыть эту неопределенность, умножим числитель и знаменатель дроби на сумму

 

 

в) Непосредственная подстановка предельного значения аргумента х=0 приводит к неопределенности . Известно, что при нахождении предела отношения двух бесконечно малых величин можно каждую из них (или только одну) заменить другой бесконечно малой, ей эквивалентной.

Так как при х→∞ ln(1 + x)~ x, tg x ~ x, то ln(1 + 3x sin x) ~3x sin x, tg x2~ x2 и

(используя 1-ый замечательный предел ).

г) При х→∞ основание стремится к 1, а показатель степени (2х – 1)→∞. Следовательно, имеем неопределенность вида 1. Для ее раскрытия будем использовать II замечательный предел

 

Представим основание в виде суммы: единицы и некоторой бесконечно малой величины:

.

Тогда

.

 

Положим х – 2 = 3у; при х → ∞ переменная у → ∞. Выразим показатель степени через новую переменную у. Так как х = 3у + 2, то 2х -1 = 2(3у + 2) – 1 = 6у + 3. Таким образом,

 

Производная и ее приложения

 

Основные правила и формулы дифференцирования:

 

1.y = c, где c=const, .



2.y = x, y'=1.

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

17. .

18. .

19. - это правило дифференцирования сложной функции.

 

Пример 1. Найти производные данных функций

а) ; б) ;

в) ; г) <1;

д) ; е) .

Решение:

а) Применяя правило дифференцирования дроби и формулы (3); (16), имеем

б) Последовательно применяя правило дифференцирования сложной функции, правила и формулы дифференцирования, имеем:

 

 

в)

г)

 

д) Предварительно прологарифмируем по основанию е обе части равенства:

или .

Теперь дифференцируем обе части, считая lny сложной функцией от переменной x.

откуда

.

е) В данном случае зависимость между аргументом х и функцией у задана уравнением, которое не разрешено относительно функции у. Чтобы найти производную y', надо продифференцировать по х обе части заданного уравнения, считая при этом у функцией от х , а затем полученное уравнение решить относительно искомой производной y'. Имеем:

Из полученного равенства, связывающего х, у и y', находим производную y':

 

 

откуда

Пример 2. Найти производную второго порядка :

а)

б)

в)

Решение:

а) Функция у задана в неявном виде. Дифференцируем по х обе части заданного уравнения, считая при этом у функцией от х:

 

откуда (1)

Снова дифференцируем по х обе части равенства (1):

(2)

Заменив y' в (2) правой частью (1), получим

.

б) Найдем первую производную данной функции

.

Найдем производную от первой производной, получим вторую производную функции :

в) Зависимость между переменными х и у задана параметрическими уравнениями. Чтобы найти производную y', находим сначала дифференциалы dy и dx и затем берем отношение этих дифференциалов:

Тогда

Производная второго порядка . Значит, чтобы найти y'',надо найти дифференциал dy':

Тогда

 

Пример 3. Исследовать методами дифференциального исчисления функцию и, используя результаты исследования, построить ее график.

 

Решение: Исследование функции проведем по следующей схеме:

1. Найдем область определения функции.

2. Исследуем функцию на четность и нечетность.

3. Найдем точки пересечения графика функции с осями координат.

4. Исследуем функцию на непрерывность; найдем точки разрыва (если они

существуют) и установим характер разрыва.

5. Найдем асимптоты кривой у = f(x).

6. Найдем интервалы возрастания и убывания функции и ее экстремумы.

7. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба.

 

Реализуем данную схему.

1. Функция определена при всех значениях аргумента х, кроме х=±2, т.е. область определения функции D(y) = (-∞;-2)U(-2;2)U(2;+∞).

2. Для установления четности или нечетности функции проверим выполнимость равенств для любых х и –х из области определения функции:

a) Если f(-x) = f(x), тогда f(x) - функция четная, т. е. ее график симметричен относительно оси Оу;

b) Если f(-x) = -f(x), тогда f(x) - функция нечетная, т. е. ее график симметричен относительно начала координат т. О(0;0).

Итак, , следовательно, данная функция является нечетной.

3. Для нахождения точек пересечения графика функции с осью Ох полагаем у=0; с осью Оу — х=0.

х=0; у=0.

у=0,

Т.е., график функции пересекает систему координат в т. О(0;0).

4. Данная функция является элементарной, поэтому она непрерывна на своей области определения D(у).Найдем односторонние пределы функции в указанных точках:

.

Т.о., в точках х=±2 функция имеет разрыв второго рода и прямых х = -2 и х = 2 – вертикальные асимптоты графика функции.

 

5. Найдем наклонные асимптоты у=kx+b, где

Таким образом, наклонная асимптота имеет уравнение у = х.

 

6. Значение f(x0) называется максимумом функции f(x), если при любом достаточно малом h>0 выполняются условия f(x0-h)<f(x0) и f(x0+h)<f(x0). Точка х0 называется в этом случае точкой максимума функции f(x) (рис.5).

 

 

Значение f(x0) называется минимумом функции f(x), если при любом достаточно малом h>0 выполняются условия f(x0-h)>f(x0) и f(x0+h)>f(x0). Точка х0 называется в этом случае точкой минимума функции f(x) (рис. 6).

Максимум или минимум функции называется экстремумом функции.

Необходимое условие экстремума. Если функция f(x) в точке х0 имеет экстремум, то производная f'(x0) обращается в нуль или не существует.

Точка х0, в которой f'(x0)=0, называется стационарной точкой. Точки, в которых f'(x)=0 или f'(x) не существует, называются критическими точками. Не всякая критическая точка является точкой экстремума.

Функция f(x) называется возрастающей в интервале (a;b), если для любых двух точек х1и х2 из указанного интервала, удовлетворяющих неравенству х1< х2, выполняется неравенство f(x1)<f(х2).Если же f(x1)>f(х2) при х1< х2, то функция f(x) называется убывающей в интервале (a;b).

 

Найдем производную данной функции

Найдем критические точки:

х1=0; х2=12, х2=

х2= .

х2≠4, х≠±2 –не входят в область определения функции D(y), значит, экстремума в этих точках быть не может.

 

Разобьем числовую ось на 5 интервалов, составим таблицу и определим знак первой производной в каждом интервале.

 

х (-∞;-2 -2 (-2 ;-2) (-2;2) (2; 2 2 (2 ;+∞)
у'(x) + - - - +
у(x) возрастает -3 убывает убывает убывает 3 возрастает
    max       min  

 

При переходе через точку х = -2 первая производная меняет свой знак с плюса на минус, поэтому в этой точке функция имеет максимум: уmax = у(-2 )= -3 .

Значит, А(-2 ;-3 ) - точка максимума.

При переходе через точку х = -2 первая производная меняет свои знаки с минуса на плюс, поэтому в этой точке функция имеет минимум: уmin = у(2 )= 3 . Значит, В(2 ;3 ) - точка минимума.

 

7. Достаточное условие выпуклости (вогнутости) графика функции.

Если f''(x)<0 в интервале (a;b), то график функции является выпуклым в этом интервале; если же f''(x)>0, то в интервале (a;b) график функции - выпуклый.

График функции у=f(х) называется выпуклым в интервале (a;b), если он расположен ниже касательной, проведенной в любой точке этого интервала (рис.7).

 

График функции называется вогнутым в интервале (a;b), если он расположен выше касательной, проведенной в любой точке этого интервала (рис.8).

 

Точка 0;f(х0)) графика функции, отделяющая его выпуклую и вогнутую части, называется точкой перегиба.

 

Найдем вторую производную:

y''=0 при х=0 и y'' – не существует при х=±2; которые не входят в область определения функции.

 

Составим таблицу, разбив числовую ось на интервалы и определим знак второй производной в каждом из них:

 

х (-∞;-2) (-2;0) (0;2) (2;+∞)
y''(х) - + - +
у(х) U   U

 

На интервалах (-∞;-2) и (0;2) y''<0 и дуга кривой выпукла; на интервалах (-2;0) и (2;+∞), y''>0 и тем самым график является вогнутым.

При переходе через точку х=0 y'' меняет свой знак, поэтому х=0 - абсцисса точки перегиба. Следовательно, С(0;0) – точка перегиба графика функции.

 

График исследуемой функции показан на рис.9.

Дополнительные точки для построения графика:

 

х -3 -5 -1 -1,5
у -5,4 -5,6 -2

 




<== предыдущая лекция | следующая лекция ==>
Применяя формулу (1), получим | Неопределенный и определенный интегралы.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.01 сек.