Последним классом является класс всех линейных функций.
Функция называется линейной, если ее многочлен Жегалкина содержит только члены степени не выше первой:
.
Класс , очевидно, содержит константы 0 и 1, тождественную функцию , отрицание , сумму по mod 2 . Дизъюнкция – нелинейная функция. Нелинейной также является конъюнкция , многочлен Жегалкина которого имеет вид .
Очевидным является следующее утверждение относительно замкнутости класса .
Лемма 5. Суперпозиция линейных функций является линейной функцией.
Докажем лемму о нелинейной функции.
Лемма 6. Пусть – нелинейная функция и . Подстановкой констант на места аргументов функции можно получить нелинейную функцию от двух аргументов.
Доказательство. Рассмотрим многочлен Жегалкина функции , который по условию содержит, по крайней мере, один член степени выше первой. Переименовывая переменные, будем считать , что в этот член входят переменные , и, возможно, какие-то другие переменные. Выполним следующую группировку членов полинома Жегалкина функции : соберем члены, в которые входят и и вынесем за скобки. Среди оставшихся соберем члены, содержащие , и вынесем за скобки. Точно так же соберем члены, содержащие , и вынесем за скобки. В результате получим
.
Здесь – некоторые функции от , причем функция тождественно не равна 0. Это следует из единственности полинома Жегалкина: если тождественно равно 0, то это означало бы, что функция имеет два полинома Жегалкина – с произведением и без него. Тогда для некоторого набора значений переменных имеем . Отсюда
,
где , , .
Лемма доказана.
В заключение заметим, что замкнутые классы попарно различны, что видно из следующей таблицы, в которой знак + означает, что функция содержится в классе, а знак – обозначает противоположную ситуацию.