русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Производная по направлению и градиент


Дата добавления: 2015-01-16; просмотров: 764; Нарушение авторских прав


Уже известно, что частные производные характеризуют скорость изменения функции в направлении соответствующей координатной оси. Попытаемся вычислить скорость изменения функции в произвольном направлении.

Опред. Производной по направлению вектора = от функции f(x;y) называют . Обозначают производную по направлению . Выведем формулу для вычисления производной по направлению. Пусть . Тогда х= Cos и у= Sin . Имеем с точностью до бесконечно малых порядка малости более высокого , чем х, равенство z= =f’x(х;y) х+ f’у(х;y) у= f’x(х;y) Cos + f’у(х;y) Sin . Разделим последнее равенство на и вычислим указанный в определении предел. Получим окончательно = f’x(х;y)Cos + f’у(х;y)Sin производную по направлению. Т.к. =90о - , то можно использовать направляющие косинусы вектора = и выражение для производной по направлению примет вид

= f’x(х;y)Cos + f’у(х;y)Сos (5.2)

Если же требуется вычислить производную по направлению для функции трех переменных, то получим формулу

= f’x(х;y;z)Cos + f’у(х;y;z)Сos + f’z(х;y;z)Сos .

Мы видим, что записанное справа выражение похоже на скалярное произведение двух векторов, один из которых единичный направления = . Для второго вектора введем обозначение

grad f(x;y;z)= f’x(х;y;z) + f’у(х;y;z) + f’z(х;y;z) (5.3)

Т.о. = grad f(x;y;z) = grad f(x;y;z) Cosф= grad f(x;y;z) Cosф откуда следует, что grad f указывает направление наибыстрейшего изменения поля. Это весьма важная физическая характеристика поля. Позже получим некоторые характеристики самого градиента.



<== предыдущая лекция | следующая лекция ==>
Частные производные и дифференциалы | Производная сложной функции нескольких переменных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.76 сек.