русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Действия с векторами в координатах


Дата добавления: 2015-08-14; просмотров: 984; Нарушение авторских прав


В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:

1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, необходимо сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:

Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .

2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , необходимо каждую координату данного вектора умножить на число :
.

Для пространственного вектора правило такое же:

Приведённые факты строго доказываются в курсе аналитической геометрии.

Примечание: Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.

Пример 7

Даны векторы и . Найти и

Решение чисто аналитическое:

Ответ:

Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:

Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)



Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.

Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):

Пример 8

Даны векторы и . Найти и

Решение:Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:

Ответ:

И в заключение занятный пример с векторами на плоскости:

Пример 9

Даны векторы . Найти и

Это задача для самостоятельного решения.

Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:

!!! Скалярное произведение векторов
Линейная (не) зависимость векторов. Базис векторов
Векторное и смешанное произведение векторов

Это, так скажем, вектор-минимум студента =)

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Задание: ,

Пример 2:Решение:
а)

б)

в)

г)

Пример 4:Решение:
По соответствующей формуле: и

Ответ:

Пример 6: и
а) Решение:найдём вектор :

Вычислим длину вектора:

Ответ:

б)Решение:
Вычислим длины векторов:

Пример 9:Решение:

Примечание:Перед выполнением действий можно предварительно раскрыть скобки:

Ответ:

Автор: Емелин Александр

 



<== предыдущая лекция | следующая лекция ==>
Как найти длину вектора? | Свойства графика квадратичной функции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.