русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ОЛДУ и НЛДУ второго порядка с постоянными коэффициентами


Дата добавления: 2015-01-16; просмотров: 2189; Нарушение авторских прав


Рассмотрим НЛДУ второго порядка с постоянными коэффициентами

. (1)

Соответствующее ему ОЛДУ есть

. (2)

Характеристическое уравнение ОЛДУ (2) есть квадратное уравнение

. (3)

Возможны три случая.

Случай 1: Тогда уравнение (3) имеет два различных действительных корня и Поэтому общее решение ОЛДУ (2) имеет вид

Случай 2: Тогда уравнение (3) имеет один действительный корень кратности 2. В этом случае общее решение ОЛДУ (2) имеет вид

Случай 3: Тогда корнями уравнения (3) будут

и

т.е. Следовательно, общее решение ОЛДУ (2) имеет вид

Согласно сводной таблице:

I. Если правая часть уравнения (1) есть то:

a) при частное решение надо искать в виде

b) при частное решение надо искать в виде

c) при частное решение надо искать в виде

II.Пусть правая часть уравнения (1) есть Тогда:

a) если не является корнем характеристического уравнения (3), то частное решение надо искать в виде

b) если является корнем характеристического уравнения (3) кратности , то частное решение надо искать в виде

III.Пусть правая часть уравнения (1) есть Тогда:

a) если (корни характеристического уравнения (3) действительны), частное решение надо искать в виде , где

b) если ( уравнение (3) не имеет действительных корней), то для или , но частное решение надо искать в виде , где

c) если ( уравнение (3) не имеет действительных корней), то для и частное решение надо искать в виде , где

IV.Пусть правая часть уравнения (1) есть Тогда:

a) если (корни характеристического уравнения (3) действительны), частное решение надо искать в виде , где

b) если ( характеристическое уравнение (3) не имеет действительных корней), то для

частное решение надо искать в виде , где

 

c) если ( характеристическое уравнение (3) не имеет действительных корней), то для



или

 

частное решение надо искать в виде , где

Пример 1. Решить уравнение y'' – 2y' + y = .

Решение. Характеристическое уравнение данного уравнения есть Число 1 есть корень кратности 2. Других корней нет. Фундаментальная система соответствующего однородного уравнения есть . Для нахождения частного решения воспользуемся таблицей (пункт II b)). Частное решение ищем в виде . Имеем

Подставляя в уравнение, получим 2A = , откуда A= . Общее решение уравнения есть y = +



<== предыдущая лекция | следующая лекция ==>
Линейные неоднородные уравнения. | Метод Лагранжа (метод произвольных постоянных) для нахождения частного решения.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.225 сек.