русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Умножение матрицы на число и сложение матриц


Дата добавления: 2015-08-14; просмотров: 1148; Нарушение авторских прав


По определению, чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример 1. Умножить матрицу на число

Складывать можно только матрицы с одинаковым числом строк и столбцов. Суммой матриц и называется матрица , элементы которой равны суммам соответствующих элементов матриц и : .

Пример 2. Сумма двух матриц

.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается через . Для любой матрицы имеем , .

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами:

1) ,

2) ,

3) ,

4) ,

5) .

где , , - матрицы, , - числа.

Произведение матриц

Произведение матрицы на матрицу определено только в том случае, когда число столбцов матрицы равно числу строк матрицы . В результате умножения получим матрицу , у которой столько же строк, как у матрицы , и столько же столбцов, как у матрицы .

По определению элемент матрицы равен сумме парных произведений элементов строки матрицы , на соответствующие элементы столбца матрицы .

Пример 3. Найти произведение матриц

и .

Решение. Имеем: матрица размера , матрица размера , тогда произведение существует и элементы матрицы равны

, , ,

, .

, а произведение не существует.

Пример 4. Найти произведение матриц

,

Очевидно, что произведение матриц не обладает перестановочным свойством, т.е. некоммутативно. Если все-таки выполняется равенство , то матрицы и называются перестановочными.

Свойства произведения матриц:

1) , где -число;

2) ;

3) ;

4) .

Единичной матрицей называется диагональная матрица, у которой все элементы равны 1.

.

Свойство единичной матрицы: для любой квадратной матрицы .

Рассмотрим произвольную квадратную матрицу , порядка . Если существует такая матрица , что , то говорят, что обратима, а называют обратной матрицей для матрицы .



Определитель матрицы

Определителем квадратной матрицы называется число, которое обозначается как или и вычисляется при помощи следующих трех правил.

Правило 1. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали.

Замечание: Определитель одноэлементной матрицы равен самому элементу.

Правило 2. Общий множитель элементов любой строки или столбца матрицы можно вынести за знак определителя.

Замечание: Определитель матрицы, у которой строка или столбец состоит только из нулей, равен .

Правило 3. Определитель матрицы не изменится, если к одной из строк (столбцов) матрицы прибавить другую строку (столбец) этой матрицы.



<== предыдущая лекция | следующая лекция ==>
Квадратные матрицы | Свойства определителя матрицы.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.