русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Задача 5. Уравнения в полных дифференциалах.


Дата добавления: 2015-01-16; просмотров: 572; Нарушение авторских прав


Дифференциальное уравнение вида

(1)

называется уравнением в полных дифференциалах, если его левая часть представляет полный дифференциал некоторой функции , т.е.

.

Для того, чтобы уравнение (1) являлось уравнением в полных дифференциалах, необходимо и достаточно, чтобы в некоторой области изменения переменных выполнялось условие

(2)

В этом случае общий интеграл имеет вид или

.

 

Пример 6.

Решить уравнение .

Решение. Проверим является ли данное уравнение уравнением в полных дифференциалах

.

Получили, что , условие (2) выполнено, значит данное уравнение в полных дифференциалах.

Найдем функцию . Для этого имеем систему:

Из первого уравнения, интегрированием по при постоянном , определяем :

,

где - произвольная функция (вместо постоянной интегрирования С берем функцию )

Частная производная , найденной функции должна равняться в силу второго уравнения системы, , что дает

,

.

Отсюда ,

- общий интеграл.

Ответ: , где .

 

Упражнения. Решить уравнения

1. . Ответ: .

2. . Ответ: .

3. . Ответ: .

4. . Ответ: .

,

уравнение в полных дифференциалах.

Проинтегрировать уравнения в полных дифференциалах:

 

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .
10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. .
19. .
20. .
21. .
22. .
23. .
24. .
25. .
26. .
27. .
28. .
29. .
30. .


<== предыдущая лекция | следующая лекция ==>
Задача 4. Уравнение Бернулли. | Задача 6. Смешанные задачи на дифференциальные уравнения первого порядка.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.228 сек.