Определение 1. Ряд, члены которого являются функциями одной или нескольких независимых переменных, определёнными на некотором множестве, называется функциональным рядом.
Рассмотрим функциональный ряд , члены которого являются функциями одной независимой переменной х. Сумма первых n членов ряда является частичной суммой данного функционального ряда. Общий член есть функция от х, определённая в некоторой области. Рассмотрим функциональный ряд в точке . Если соответствующий числовой ряд сходится, т.е. существует предел частичных сумм этого ряда (где − сумма числового ряда), то точка называется точкой сходимости функционального ряда . Если числовой ряд расходится, то точка называется точкой расходимости функционального ряда.
Определение 2. Областью сходимости функционального ряда называется множество всех таких значений х, при которых функциональный ряд сходится. Область сходимости, состоящая из всех точек сходимости, обозначается . Отметим, что R.
Функциональный ряд сходится в области , если для любого он сходится как числовой ряд, при этом его сумма будет некоторой функцией . Это так называемая предельная функция последовательности : .
Как находить область сходимости функционального ряда ? Можно использовать признак, аналогичный признаку Даламбера. Для ряда составляем и рассматриваем предел при фиксированном х: . Тогда является решением неравенства и решением уравнения (берём только те решения уравнения, в которых соответствующие числовые ряды сходятся).
Пример 1. Найти область сходимости ряда .
Решение. Обозначим , . Составим и вычислим предел , тогда область сходимости ряда определяется неравенством и уравнением . Исследуем дополнительно сходимость исходного ряда в точках, являющимися корнями уравнения:
а) если , , то получается расходящийся ряд ;
б) если , , то ряд сходится условно (по
признаку Лейбница, пример 1, лекция 3, разд. 3.1).
Таким образом, область сходимости ряда имеет вид: .