русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод математической индукции


Дата добавления: 2015-08-14; просмотров: 4827; Нарушение авторских прав


Во многих разделах математики приходится доказывать истинность утверждения, зависящего от , т.е. истинность высказывания p(n) для "nÎN (для любого nÎN p(n) верно).

Часто это удается доказать методом математической индукции.

В основе этого метода лежит принцип математической индукции. Обычно он выбирается в качестве одной из аксиом арифметики и, следовательно, принимается без доказательства. Согласно принципу математической индукции предложение p(n) считается истинным для всех натуральных значений переменной, если выполнены два условия:

1. Предложение p(n) истинно для n = 1.

2. Из предложения, что p(n) истинно для n = k (k - произвольное натуральное число) следует, что оно истинно для n = k + 1.

Под методом математической индукции понимают следующий способ доказательства

1. Проверяют истинность утверждения для n = 1 – база индукции.

2. Предполагают, что утверждение верно для n = k – индуктивное предположение.

3. Доказывают, что тогда оно верно и для n = k + 1 индуктивный переход.

Иногда предложение p(n) оказывается верным не для всех натуральных n, а начиная с некоторого для n = n0. В этом случае в базе индукции проверяется истинность p(n) при n = n0.

Пример 1. Пусть . Доказать, что

1. База индукции: при n = 1 по определению S1 = 1 и по формуле получаем один результат. Утверждение верно.

2. Индуктивное предположение. Пусть n = k и .

3. Индуктивный переход. Пусть n = k + 1. Докажем, что .

Действительно, в силу индуктивного предположения

Преобразуем это выражение

Индуктивный переход доказан.

Замечание.Полезно записать, что дано (индуктивное предположение) и что нужно доказать!

Пример 2. Доказать

.

1. База индукции. При n = 1, утверждение, очевидно, верно.

2. Индуктивное предположение. Пусть n = k и



3. Индуктивный переход. Пусть n = k + 1. Докажем:

Действительно, возведем правую сторону в квадрат как сумму двух чисел:

Используя индуктивное предположение и формулу суммы арифметической прогрессии: , получим

Пример 3.Доказать неравенство

для .

1. Базой индукции в этом случае является проверка истинности утверждения для , т.е. необходимо проверить неравенство . Для этого достаточно возвести неравенство в квадрат: или 63 < 64 – неравенство верно.

2. Пусть неравенство верно для , т.е.

.

3. Пусть , докажем:

.

Используем предположение индукции

Зная как должна выглядеть правая сторона в доказываемом неравенстве выделим эту часть

Остается установить, что лишний множитель не превосходит единицы. Действительно,

.

Пример 4. Доказать, что при любом натуральном число оканчивается цифрой .

1. Наименьшее натуральное , с которого справедливо утверждение, равно . .

2. Пусть при число оканчивается на . Это означает, что это число можно записать в виде , где – какое-то натуральное число. Тогда .

3. Пусть . Докажем, что оканчивается на . Используя полученное представление, получим

Последнее число имеет ровно единиц.

Приложение



<== предыдущая лекция | следующая лекция ==>
Элементы комбинаторики | Аксиомы теории множеств


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.