русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Сравнение мощностей


Дата добавления: 2015-08-14; просмотров: 2074; Нарушение авторских прав


 

 

Теорема 1 (Кантора-Бернштейна).Пусть для множеств А и В существуют множества А1 ÍА и В1 ÍВ такие, что множество А равномощно с В1, а множество В с А1, то множества А и В равномощны.

Доказательство. Пусть f - биекция В на А1, а g - биекция А на В1. Тогда f(В)=А1 и f(В1)=А2 ÍА1. Суперпозиция h=fog функций является также биекцией А на А2. Тогда функция h отображает

А на А2

А1 Í А на А3 Í А

А2 Í А1 на А4 Í А3

А3 Í А2 на А5 Í А6 и т.д.

Отсюда следует, что h является биекцией

из А – А1 на А2 – А3

из А1 – А2 на А3 – А4

из А2 – А3 на А4 – А5 и т.д.

Зададим множества

Е = (А – А1)È(А2 – А3)È(А4 – А5)È(А6 – А7)È ...

F = (А2 – А3)È(А4 – А5)È(А6 – А7)È ...

D = АÇА1ÇА2ÇА3ÇА4Ç...

G = (А1 – А2)È(А3 – А4)È(А5 – А6)È ...

Из замеченного выше следует, что h является биекцией E на F. Кроме того, справедливы равенства А = DÈGÈE и А = DÈGÈF. Следовательно отображение Т из А в А1, определяемое соотношением

является биекцией А на А1, т.е. множества А и А1 равномощны. Последнее означает, что все четыре множества в теореме равномощны.

Теорема 2. Пусть Х и У два множества такие, что Х¹Æ, У¹Æ и в У не менее двух элементов. Тогда множество всех функций, действующих из Х в У является множеством, мощность которого больше мощности множества Х.

Доказательство. Обозначим множество функций, действующих из Х в У через УХ. Доказательство разобьем на две части. Сперва покажем, что существует инъекция множества Х на часть множества УХ. Пусть у1ÎУ, у2ÎУ, у1 ¹ у2 и х0ÎХ. Построим функцию f[х0] следующим образом: f[х0](х0) = у1, а если х ¹ х0, то f[х0] (х) = у2. При таком построении различным элементам в Х соответствуют различные функции. Например, если х1 ¹ х0, то f[х1](х0) = у2. Таким образом, получаем инъекцию из Х в УX.



Покажем теперь, что не существует биекции между Х и УX. Предположим противное, что g является биекцией из Х на УX и g(x) = fx ÎУХ. Покажем, что существует fÎУХ такое, что f ¹ fх для любого хÎХ. Пусть хÎХ и fхÎУХ соответствующая функция. Определим f(х) = аÎУ из условия а ¹ fх(x). Такой элемент а в У обязательно найдется, т.к. в У не менее двух элементов. Таким образом построенная функция f не будет совпадать ни с одной функцией f . Следовательно g не может быть биекцией.

Теорема 3. Множество всех подмножеств произвольного непустого множества Х имеет мощность большую, чем мощность множества Х.

Доказательство. Положим У={0,1}. Рассмотрим множество УХ. Если fÎУХ, то f разбивает Х на два множества: Х0(f) = {xÎX: f(x)=0} и Х1(f) = {xÎX: f(x) = 1}. Таким образом, каждому fÎУX соответствует множество Х1(f). Наоборот, если Х1 - некоторое подмножество из Х, то полагая

получим fÎУХ. Этим мы построили биекцию между множеством всех подмножеств множества Х и множеством УХ. Следовательно они равномощны и по теореме 2 мощность множества Х меньше мощности множества всех подмножеств.

Примеры равномощных множеств

 

Приведенные выше примеры и теоремы показывают, что установить равномощность различных множеств далеко не просто. В этом параграфе мы рассмотрим примеры построения биекции между различными множествами. Будут приведены примеры доказательств равномощности ряда множеств.

Пример 1. Установить биекцию между отрезком [0, 1] и отрезком [а, в].

Решение. Легко устанавливается биективность линейного отображения x = (в – a)t + a отрезка [0, 1] на отрезок [а, в].

Пример 2. Установить биекцию между интервалом (0, 1) и интервалом (–¥, +¥).

Решение. Легко устанавливается биективность отображения x= ctg(pt) интервала (0, 1) на интервал (–¥, +¥).

Задача. Рассмотреть основные элементарные функции и найти промежутки, на которых они являются биективным отображением.

Пример 3. Построить биекцию между отрезком [0, 1] и интервалом (0, 1).

Решение. Решение этой задачи основано на несчетности рассматриваемых множеств и теореме 4 из параграфа 6. Идея решения состоит в том, что из интервала (0, 1) выделяют некоторое счетное множество А. Затем к нему добавляют две точки {0} и {1}. Вновь полученное множество (обозначим его В Ì [0, 1]), также является счетным. Следовательно, множества А и В равномощны и существует биекция f, отображающая B на A. Построим теперь биекцию отрезка [0, 1] на интервал (0, 1) следующим образом:

Пример 4. Построить биекцию между окружностью единичного радиуса и отрезком [0, 1].

Схема решения. Легко устанавливается биекция между точкой окружности и углом, соответствующим этой точке. Этим получается биекция окружности и полуотрезка [0, 2p). Затем по схеме примера 3 строится биекция полуотрезка [0, 2p) на отрезок [0, 1].

Пример 5. Доказать, что множество всех окружностей на плоскости, радиусы которых рациональные числа и координаты центра которых - рациональные числа, есть счетное множество.

Решение. Нетрудно видеть, что каждый элемент рассматриваемого множества может быть отождествлен с тройкой чисел (х, у, r), где (х, у) - координаты центра окружности, а r - ее радиус. Этим между множеством указанных окружностей и множеством Q´Q´Q устанавливается биекция. Но произведение счетных множеств счетно (см. задачу в 6 параграфе) и, следовательно, наше множество также счетно.

Пример 6. Доказать, что множество точек разрыва монотонной функции, заданной на отрезке [а, в], конечно или счетно.

Решение. Предположим, что рассматриваемая функция f(х) является возрастающей. Пусть хa точка разрыва этой функции. В силу монотонности функции и ее ограниченности ( f(а) < f(х) < f(в) ) в точке хa будет существовать как предел слева, так и предел справа: Таким образом, множество точек разрыва { хa } может быть отождествлено с множеством отрезков{[Aa , Ba]}. При этом необходимо заметить, получаемые отрезки могут пересекаться лишь на концах и все они лежат на отрезке [f(а), f(в)]. Поставим каждому отрезку [Аa, Вa] в соответствие рациональное число уa, выбрав в качестве такового произвольное рациональное число из интервала (Аa, Вa) (наличие такое числа гарантируется аксиомой непрерывности действительных чисел и тем, что Аa ¹ Вa). В силу отмеченного выше, построенное соответствие будет являться инъекцией. Следовательно, мы построили инъекцию множества точек разрыва монотонной функции на отрезке [а, в] в счетное множество рациональных точек отрезка [f(а), f(в)]. Это означает, что рассмотренное множество точек разрыва не более чем счетно.

 



<== предыдущая лекция | следующая лекция ==>
Континуум | Отношение порядка


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.