русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

РАНГ МАТРИЦЫ


Дата добавления: 2015-08-14; просмотров: 671; Нарушение авторских прав


Основные понятия и примеры

 

Ранг матрицы – это особая числовая функция, заданная на множестве матриц. В отличие от определителя, ранг матрицы существует для матрицы любого порядка.

Прежде чем дать определение ранга матрицы, рассмотрим понятие минора матрицы.

Минором k-го порядка матрицы А называется определитель матрицы, составленной из элементов каких-либо k выделенных строк и каких-либо k выделенных столбцов исходной матрицы А.

Понятие минора k-го порядка широко используется в линейной алгебре. В отличие от минора элемента матрицы, минор k-го порядка не связан с конкретным элементом матрицы и существует для любых, а не только для квадратных матриц. Миноров k-го порядка для любой матрицы может быть много. Например, для матрицы порядка количество миноров k-го порядка определяется числом

.

Главным, или угловым минором k-го порядка матрицы называется минор, составленный из первых k строк и первых k столбцов этой матрицы.

Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначается как .

Пример 3.1. Пусть , , . Тогда , , .

 

Любой отличный от нуля минор матрицы, порядок которого равен рангу этой матрицы, называется ее базисным минором.

 



<== предыдущая лекция | следующая лекция ==>
Алгебраическое дополнение и минор элемента матрицы. Разложение определителей по строке и столбцу | Понятия линейной независимости строк и столбцов матрицы. Базис в системе строк (столбцов) матрицы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.205 сек.