1. Найти уравнение диагонали параллелограмма, не проходящей через точку пересечения его сторон Х+Y-1=0 и Y+1=0 , если известно, что диагонали параллелограмма пересекаются в точке (-1;0).
2. Найти координаты точки симметрично точке (2;-4) относительно прямой 4Х+ЗY+1=0.
3. Составить уравнение прямой, проходящей через точку А (-1:2) так, что середина ее отрезка, заключенного между параллельными прямыми Х+2Y+1=0 и Х+2Y-3=0, лежит на прямой Х-Y- 6=0.
4. Даны уравнения двух сторон треугольника 4Х-5Y+9=0 и Х+4Y-3=0. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке (3;1).
5. Вычислить координаты вершин ромба, если известны уравнения двух его сторон: 2Х-Y+4=0 и 2Х-Y+10=0, и уравнение одной из его диагоналей Х+Y+2=0.
6. Даны две вершины треугольника А (-4; 5) и В (4; 1) и точка пересечения его высот Д (3; 5). Составить уравнения сторон треугольника.
7. Даны уравнения высот треугольника АВС: ЗХ+2Y+6=0 и Х-Y+5=0 и координаты одной из вершин А (-5; 3). Найти уравнения сторон треугольника.
8. Даны уравнения двух сторон треугольника: 5Х-2Y-8=0 и ЗХ-2Y-8=0. Составить уравнения третьей стороны треугольника, если известно, что ее середина совпадает с началом координат.
9.Составить уравнение сторон треугольника, зная одну из его вершин А(2;-3), и уравнения двух высот 7Х-2Y-10=0 и 2Х-7Y+3=0.
10. Даны уравнения основания равнобедренного треугольника Х+Y-4=0 и боковой стороны Х-2Y+4=0. Точка А (-2; 3) лежит на второй боковой стороне. Найти уравнение второй боковой стороны.
11. Даны две противоположные вершины ромба А (3; 4) и С (1;-2) и уравнение одной из его сторон Х-Y+1=0. Найти уравнения остальных сторон ромба.
12. Даны середины сторон треугольника М (2; 1), N (5; 3), Р (3;-4). Составить уравнения сторон треугольника.
13. Составить уравнения сторон треугольника, если даны одна из его вершин (1; 3) и уравнения двух медиан: Х-2Y +1=0 и Y-1=0.
14. Составить уравнение прямой, проходящей через точку А (1; 3) так, что середина ее отрезка, заключенного между параллельными прямыми Х+2Y +5=0 и Х+2Y+1=0, лежит на прямой Х-Y-5=0.
15. Составить уравнение сторон треугольника, зная одну изего вершин А (0;2), и уравнения высот ВМ: Х+Y=4 и СМ: Y=2Х. М-точка пересечения его высот.
16. Стороны АВ и ВС параллелограмма АВСД заданы уравнениями 2Х-Y+5=0 и X-2Y+4=0, диагонали его пересекаются в точке М (1; 4). Найти длины его высот.
17. Найти вершины прямоугольного равнобедренного треугольника, если дана вершина прямого угла С (3;-1) и уравнение гипотенузы 3Х-Y+2=0.
18. Две стороны параллелограмма заданы уравнением Y=Х-2 и 5Y=Х+6. Диагоналиего пересекаются в начале координат. Написать уравнение двух других сторон параллелограмма и его диагоналей.
19. Вычислить площадь ромба, зная одну из его вершин А (0; 1), точку пересечения его диагоналей М (4; 4) и точку Р (2; 0) на стороне АВ.
20. Через точку пересечения прямых 2Х-5Y-1=0 и Х+4Y-7=0 провести
прямую, делящую отрезок между точками А (4;-3) и В (-1; 2) в отношении 2:3.
21. Определить, при каких значениях m и n прямая (2m-n+5)Х+7n+19=0 параллельна оси ОY, прямая и отсекает на оси ОХ отрезок, равный 5(считая от начала координат). Написать уравнение этой прямой.
22. Определить, при каком значении а прямая (а+2)х+(а2-9)у+3а2-8а+5=0:
1)параллельна оси абсцисс;
2)параллельна оси ординат;
3)проходит через начало координат.
В каждом случае написать уравнение прямой.
23. Две стороны квадрата лежат на прямых 5Х-12Y-65=0 и 5Х-12Y+26=0. Вычислить его площадь.
24. Даны две смежные вершины квадрата А (2; 0) и В (-1; 4). Составить уравнения его сторон и вычислить его площадь.
25. Точка А (5;-1) является вершиной квадрата, одна из сторон которого лежит на прямой 4Х-3Y-7=0. Составить уравнения прямых, на которых лежат остальные стороны этого квадрата.