русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Конус второго порядка


Дата добавления: 2015-08-14; просмотров: 1983; Нарушение авторских прав


(8.12.) – называется уравненим конуса второго порядка. Применив метод сечения получим (Рис.8.13.)

Замечание: Уравнения и также определяют конус второго порядка.

 

Рис.8.13.

Пример 8.4.4.1. Определить вид поверхности:

Решение: Приведем к каноническому виду: Произведем параллельный перенос осей координат в точку (1,2,-1):

- коническая поверхность.

 

Контрольные вопросы и задания.

1. Что называется поверхностью вращения?

2. В чем заключается метод сечения?

3. Запишите канонические уравнения поверхностей второго порядка.

4. Составить уравнение поверхности, образованной вращением эллипса вокруг оси Ox .

5. Составить уравнение поверхности, образованной вращением гиперболы вокруг оси Oz .

6. Доказать, что эллиптический параболоид, определяемый уравнением , может быть получен в результате вращения параболы вокруг оси Oz и последующего равномерного сжатия пространства к плоскости Oxz.

7. Доказать, что уравнение z=xy определяет гиперболический параболоид.

8. Доказать, что уравнение определяет конус с вершиной в начале координат.

9. Ось Oyявляется осью круглого конуса с вершиной в начале координат; его образующие наклонены под углом в 60° к оси Oy. Составить уравнение этого конуса.

10. Составить уравнение конуса с вершиной в точке S(3;0;-1), образующие которого касаются эллипсоида .



<== предыдущая лекция | следующая лекция ==>
Гиперболический параболоид. | Задачи для самостоятельной работы.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.