русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вычисление дисперсии на основании индивидуальных значений испытуемых


Дата добавления: 2015-01-16; просмотров: 807; Нарушение авторских прав


 

X индивидуальные значения d отклонения от средних Л' квадрат отклонений
1 3 7 8 11 -5 -3 1 \ 25 9 1 1
х=6 среднее   Sd2=61 сумма квадратов

В своей книге „Социальная физика" (1835), Кетле показал, что час­тотные распределения самых различных характеристик, будучи пред­ставленными графически, образуют нормальное распределение. Из это­го он сделал вывод, что природа в создании человека стремится к сред­ним величинам. Однако иногда ей не удается достичь своей цели - она „промахивается". Небольшие ошибки (соответствующие небольшим отклонениям) встречаются чаще, а большие - крайне редко.

Идея Кетле о нормальном распределении была положена Гальто-ном в основу его рассуждений о наследственной обусловленности спо­собностей человека. Способности, как считает Гальтон, также имеют нормальное распределение: больше всего существует людей со средним уровнем умственного развития, а гении и полные бездарности встреча­ются крайне редко. Именно для подтверждения этого положения Галь­тон и проводил психологические эксперименты на многотысячных выборках испытуемых.

Однако в отличие от Кетле, который пытался объяснить „ошибки" природы с точки зрения теории вероятности - теории, имеющей уже двухвековую историю к моменту появления его книги, - Гальтон видел причину нормального распределения способностей в их наследствен­ной обусловленности.

Разделяя представления Дарвина о том, что эволюция осуществля­ется путем естественного отбора, Гальтон приложил основные положе­ния этой теории к объяснению источников различий в способностях человека.

Теория Дарвина базируется на трех принципах - на принципе из­менчивости (согласно которому по многим характеристикам существу­ют большие индивидуальные различия или межиндивидуальная измен­чивость), на принципе наследственности (заключающемся в том, что дети похожи на родителей больше, чем на тех, кто не связан с ними родственными узами) и на принципе отбора (состоящем в том, что более приспособленные имеют больше шансов выжить и оставить потомство).



Различия между людьми по способностям очевидны (принцип из­менчивости). Генеалогический анализ родственников великих людей позволил Гальтону сказать о наследственной передаче способностей (принцип наследуемости). Объединение этих положений привело его к мысли о наследственной обусловленности межиндивидуальной измен­чивости, т.е.индивидуальных различий. А раз так, то, следовательно, общество должно все свои силы направить на помощь наиболее талан­тливым людям: это повысит их приспособленность и, в результате, из­менит в лучшую сторону весь человеческий вид (принцип отбора).

Представления Кетле о закономерностях, приложимых к индивиду­альным различиям, были развиты статистиками К. Пирсоном и Р. Фи­шером. Они же создали методы, позволяющие оценить соотношения


между различными характеристиками. Появление первого такого ме­тода - корреляционного анализа - непосредственно связано с именем Гальтона (Пирсон был его учеником и коллегой) и с логикой развития его исследований, требующих создания более точных оценок степени сходства родителей и детей.

Показатель, получаемый при использовании корреляционного ана­лиза, - коэффициент корреляции - является мерой связи между двумя характеристиками и свидетельствует о том, в какой степени изменчи­вость одной из рассматриваемых характеристик сопровождается, в сред­нем, изменчивостью другой. Величины коэффициентов корреляции могут меняться в пределах от -1 до 1, при этом, чем дальше значение коэффициента от 0, тем более тесной является связь между характерис­тиками. Способы вычисления различных типов корреляций можно на­йти в любом учебники по статистике (например, Дж. Гласе, Дж. Стэн­ли, 1976). Здесь же будет на примере рассмотрен смысл коэффициента корреляции.

Допустим, нам необходимо выяснить, связаны ли, и если связаны, то в какой степени, особенности интеллектуального развития ребенка и его музыкальные способности. Построим график (см. рис. 2), у кото­рого одна ось представляет собой показатели интеллекта (например, баллы по тесту интеллекта), а другая - показатели музыкальных спо­собностей (например, экспертные оценки учителя музыки). Точками отметим индивидуальные значения испытуемых. Местоположение каж­дой точки определяется уровнем развития интеллекта данного ребенка (абсцисса) и уровнем его музыкальных способностей (ордината). На­неся на график индивидуальные значения всех своих испытуемых, мы можем получить разные картины.

Если распределение точек окажется таким, как на рисунке 2а или 26, можно говорить, о том, что связь между этими характеристиками существует и эта связь - положительная, т.е. чем выше у ребенка одни способности, тем выше и другие. Однако взаимообусловленность свя­зей в двух этих случаях различна. В первом случае (2а) связь тесная, и коэффициент корреляции вычисленный на основании таких данных будет приближаться к 1. Во втором случае (26) связь существует, но коэффициент корреляции не слишком высок - примерно 0,5.

Картина, полученная на рисунке 2в, свидетельствует об отсутствии взаимосвязей. Нет основания для вывода, что более музыкальные дети одновременно являются и более развитыми интеллектуально. Коэффи­циент корреляции равен в этом случае 0.

На рисунке 2г показан пример отрицательной связи, т.е. чем выше интеллект ребенка, тем ниже его музыкальные способности.

Коэффициент корреляции указывает на два факта: во-первых, есть ли связь между параметрами и, во-вторых, если связь есть, то насколь­ко она тесная.


а. Коэффициент корреляции близок к 1,0



<== предыдущая лекция | следующая лекция ==>
Распределение объема грудной клетки у шотландских солдат, описанное Кетле | Равен 0 равен-0,5


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.