Определение. Пусть А – множество элементов произвольной природы, V – действительное линейное пространство. А называется аффинным пространством, связанным с линейным пространством V, если задан закон, по которому каждой паре элементов , где , ставится в соответствие элемент , причем выполняются две аксиомы.
1*. (рис. 3.1).
2*. единственный такой, что . Этот вектор обозначается . Таким образом, (рис. 3.2).
Элементы аффинного пространства называются точками, а операция в аффинном пространстве называется откладыванием вектора от точки.
Рис. 3.1 Рис. 3.2
Как видим, аксиомы аффинного пространства просто «списаны» со школьного точечного трехмерного пространства.