Определение. Число n называется размерностью линейного пространства V, а само пространство V называется n-мерным, если в V существует линейно независимая система из n векторов, а любая система из (n + 1)-го вектора линейно зависима. Размерность пространства по определению считается равной нулю.
Следствие. В n-мерном пространстве любая система из m векторов при m > n линейно зависима.
Размерность линейного пространства V сокращенно обозначается . Если , то пространство будем обозначать . Линейные n-мерные пространства называются конечномерными.
Определение. Линейное пространство V называется бесконечномерным, если в V найдется линейно независимая система из n векторов.
Теорема 3.2. Для того чтобы линейное пространство было n-мерным, необходимо и достаточно, чтобы в нем существовал базис, состоящий из n векторов.
► Достаточность. Дано: в пространстве V существует базис из n векторов
( ). (3.27)
Тогда в V есть линейно независимая система из n векторов (это система (3.27)). Покажем, что любая система из (n + 1)-го вектора в этом пространстве линейно зависима. Выберем одну из них:
( ). (3.28)
Каждый вектор системы (3.28) можно разложить по базису (3.27). Обозначим – координатные столбцы векторов системы (2) в базисе (1). Тогда
(так как эта матрица имеет только n строк). По матричному критерию система (3.28) линейно зависима и, таким образом, .
Необходимость. Дано: . Согласно определению, в пространстве существует линейно независимая система из элементов. Пусть
( ) – (3.29)
одна из таких систем. Но система
( ) (3.30)
линейно зависима. По 4-му свойству линейной зависимости (§ 2) вектор
можно представить в виде линейной комбинации векторов системы (3.29), т. е.
Таким образом, (3.29) – система образующих пространства V, а значит, и его базис. ◄
Замечание. При доказательстве необходимости мы одновременно показали, что в n-мерном пространстве любая линейно независимая система из n векторов является базисом.
Следствие. Любой базис конечномерного линейного пространства V содержит одинаковое количество векторов.
►Пусть в пространстве наряду с базисом (3.29) есть еще и некоторый базис
( ), (3.31)
состоящий из m векторов (m ≠ n). Рассмотрим два случая:
а) m > n. Тогда (3.31) линейно зависима согласно следствию к определению размерности, что противоречит определению базиса.
б) m < n. Так как (3.31) – базис пространства , то по теореме 3.2 , поэтому система (3.29) линейно зависима, что противоречит определению базиса. Таким образом, m = n. ◄
Вывод: размерность линейного пространства совпадает с количеством векторов в любом из его базисов.
Используя примеры базисов, приведенные в § 3, можно утверждать, что: , , , , , . Примером бесконечномерного пространства может служить пространство всех функций.
Упражнение. Докажите, что .
Теорема 3.3.В n-мерном линейном пространстве любую линейно независимую систему из m векторов при m < n можно дополнить до базиса.
►Пусть
– (3.32)
линейно независимая система пространства . Предположим, что при всех система линейно зависима. Тогда на основании свойства 4º § 2, вектор можно выразить через векторы системы (3.32), поэтому (3.32) – система образующих, а значит, и базис пространства , следовательно, , что противоречит условию. Таким образом, найдется вектор такой, что система
– (3.33)
линейно независима. Если m + 1 = n, то (3.33) – базис пространства . В противном случае с системой (3.33) поступаем так же, как и с системой (3.32). После конечного числа шагов получаем базис пространства .◄
Упражнение. Фундаментальной системой решений однородной системы линейных уравнений называется базис в линейном пространстве решений этой системы. Во второй главе было показано: если в общем решении однородной системы линейных уравнений придать значения свободным неизвестным по строкам единичной матрицы, получим фундаментальную систему решений. Докажите: если в общем решении однородной системы линейных уравнений придать значения свободным неизвестным по строкам любой невырожденной матрицы, также получим фундаментальную систему решений.