русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Доказательство.


Дата добавления: 2015-01-16; просмотров: 727; Нарушение авторских прав


Подставив функцию в уравнение (6.5), получим

f1 + f2. Это равенство является тождеством, т.к. f1 и f2. Теорема доказана.

 

§7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью.

Пусть в уравнении (6.1) коэффициенты постоянны, т.е. уравнение имеет вид:

f(x) (7.1)

где .

Рассмотрим метод отыскания частного решения уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1. f(x) , где – многочлен степени , причем некоторые коэффициенты, кроме , могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение записываем в виде: , где – неопределенные коэффициенты, которые подлежат определению методом неопределенных коэффициентов.

Пример 1. Найти общее решение уравнения .

Решение.

Для уравнения составляем характеристическое уравнение: . Откуда получаем , . Следовательно, общее решение однородного уравнения есть . Правая часть заданного уравнения f(x) имеет специальный вид (случай 1), причем не является корнем характеристического уравнения, поэтому частное решение ищем в виде: , где – неопределенные коэффициенты. Найдем производные первого и второго порядков и подставим их в заданное уравнение:

.

Обе части сокращаем на и приравниваем коэффициенты при одинаковых степенях в левой и правой частях равенства

Из полученной системы уравнений находим: . Тогда , а общее решение заданного уравнения есть:

.

б) Если является корнем кратности соответствующего характеристического уравнения, то частное решение ищем в виде:



,

где – неопределенные коэффициенты.

Пример 2. Решить уравнение .

Решение.

Соответствующее характеристическое уравнение имеет вид:

, откуда , . Тогда общее решение однородного уравнения есть: .

Правая часть заданного уравнения имеет специальный вид (случай 1). Так как является корнем характеристического уравнения кратности , то частное решение ищется в виде:

. Находим неопределенные коэффициенты методом, изложенным в примере 1. В результате получаем . Окончательно имеем следующее выражение для общего решения:

.

2. Правая часть f(x) , где хотя бы одно из чисел и отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение ищем в виде:

,

где – неопределенные коэффициенты.

б) Если число является корнем характеристического уравнения для уравнения (5.1), причем его кратность , то записываем частное решение в виде:

,

где – неопределенные коэффициенты.

Пример 3. Решить уравнение .

Решение.

Корни характеристического уравнения для уравнения будут , . Тогда общее решение этого лоду: .

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) , где , а . Число является корнем характеристического уравнения кратности , поэтому частное решение лнду имеет вид: .

Для определения и находим , и подставляем в заданное уравнение:

.

Приводя подобные члены, приравнивая коэффициенты при , , получаем следующую систему: , отсюда .

Окончательно общее решение заданного уравнения имеет вид: .

3. f(x) , где и - многочлены степени и соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число не является корнем характеристического уравнения для уравнения (5.1), то вид частного решения будет:

, (7.2)

где – неопределенные коэффициенты, а .

б) Если число является корнем характеристического уравнения для уравнения (5.1) кратности , то частное решение лнду будет иметь вид:

, (7.3)

т.е. частное решение вида (7.2) надо умножить на . В выражении (7.3) - многочлены с неопределенными коэффициентами, причем их степень .

Пример 4. Указать вид частного решения для уравнения

.

Решение.

Характеристическое уравнение имеет вид: . Его корни: , . Общее решение лоду имеет вид:

.

Правая часть заданного уравнения имеет специальный вид (случай 3): f(x) . Число является корнем характеристического уравнения кратности . Коэффициент при есть многочлен первой степени, а при - нулевой степени, поэтому степень многочленов с неопределенными коэффициентами надо брать . Итак, вид частного решения:

.

Далее коэффициенты могут быть определены по методу неопределенных коэффициентов.

Замечание. Если правая часть уравнения (7.1) есть сумма двух функций f(x) = f1(x) + f2(x), где каждая из f1(x), f2(x) имеют специальный вид (случаи 1-3), то частное решение подбирается в виде суммы: , где есть частное решение для уравнения с правой частью f1(x), а есть частное решение для уравнения с f2(x). Аналогично находятся частные решения в случае, когда правая часть есть алгебраическая сумма конечного числа функций специального вида, рассмотренного в случаях 1-3.

 

§8. Метод вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

, (8.1)

где – линейно независимые на некотором интервале X решения лоду, а - произвольные постоянные. Будем искать частное решение лнду в форме (8.1), считая, что – не постоянные, а некоторые, пока неизвестные, функции от :

. (8.2)

Продифференцируем равенство (8.2):

. (8.3)

Подберем функции и так, чтобы выполнялось равенство: . Тогда вместо (8.3) будем иметь:

. (8.4)

Продифференцируем это выражение еще раз по . В результате получим:

. (8.5)

Подставим (8.2), (8.4), (8.5) в лнду 2-го порядка f(x):

f(x)

или

f(x). (8.6)

Так как - решения лоду , то последнее равенство (8.6) принимает вид: f(x).

Таким образом, функция (8.2) будет решением лнду в том случае, если функции и удовлетворяют системе уравнений:

(8.7)

Так как определителем этой системы является определитель Вронского для двух линейно независимых на X решений соответствующего лоду, то он не обращается в ноль ни в одной точке интервала X. Следовательно, решая систему (8.7), найдем и : и . Интегрируя, получим:

, ,

где - произвольные постоянные.

Возвращаясь в равенство (8.2), получим общее решение неоднородного уравнения:

.

 

Пример. Решить уравнение: .

Решение.

Соответствующее однородное уравнение . Интегрируя его, получим общее решение: . Итак , двумя линейно независимыми решениями, образующими общее решение, являются функции и .

Предположим теперь, что общим решением заданного уравнения является выражение .

Для определения функций и имеем систему уравнений:

Откуда получаем , . Следовательно, общее решение заданного уравнения есть: .

 

 



<== предыдущая лекция | следующая лекция ==>
Доказательство. | Линейные уравнения высших порядков


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.217 сек.