русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейные уравнения высших порядков


Дата добавления: 2015-01-16; просмотров: 903; Нарушение авторских прав


§1. Однородное уравнение.

Линейным уравнением n-го порядка называется уравнение вида:

f(x). (1.1)

Если при всех рассматриваемых значениях функция f(x) равна нолю, то это уравнение называется однородным, в противном случае – неоднородным.

Предполагаем, что коэффициенты и свободный член f(x) определены и непрерывны в интервале . Тогда уравнение (1.1) имеет единственное решение , определенное во всем интервале и удовлетворяющее начальным условиям: , причем начальные данные можно задавать произвольно, а нужно брать из интервала .

Линейное однородное дифференциальное уравнение (лоду) всегда имеет нулевое решение .

Для построения общего решения лоду достаточно знать линейно независимых в интервале частных решений , т.е. таких решений, для которых тождество

, ,

где - постоянные числа, может выполняться только при . Такая система решений называется фундаментальной. Чтобы система решений лоду была фундаментальной, необходимо и достаточно, чтобы ее определитель Вронского

был отличен от нуля хотя бы в одной точке из интервала . В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала .

Если найдена фундаментальная система решений лоду, то формула

, (1.2)

где - произвольные постоянные, дает общее решение этого уравнения в области .

 

§2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами.

Это уравнение имеет вид:

, (2.1)

где - постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определенную при всех и состоящую из степенных, показательных и тригонометрических функций. Соответствующее ей общее решение:

определено в области , т.е. во всем пространстве .

Построение фундаментальной системы решений лоду делается методом Эйлера, который состоит в том, что частное решение лоду ищется в виде , где - некоторое число, подлежащее определению. Подставляя эту функцию в уравнение (2.1), после сокращения на получим характеристическое уравнение:



Его корни называются характеристическими числами уравнения (2.1). Различают три случая.

1. Все корни характеристического уравнения различны и вещественны. Обозначим их через . Тогда фундаментальной системой решений будут: , а общее решение имеет вид: .

2. Все корни характеристического уравнения различны, но среди них имеются комплексные. Пусть – комплексный корень характеристического уравнения. Тогда тоже будет корнем этого уравнения. Этим двум корням соответствуют два линейно независимых частных решения: . Записав линейно независимые частные решения, соответствующие другим сопряженным парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).

3. Среди корней характеристического уравнения имеются кратные. Пусть - вещественный k-кратный корень. Тогда ему соответствует линейно независимых частных решений вида , а в формуле общего решения – выражение вида . Если - комплексный корень характеристического уравнения кратности , то ему и сопряженному с ним корню той же кратности соответствуют линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида:

.

Записав линейно независимые частные решения указанного выше вида, соответствующие всем простым и кратным вещественным корням, а также сопряженным парам простых и кратных комплексных корней, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).

 



<== предыдущая лекция | следующая лекция ==>
Доказательство. | Настройка почты в Outlook Express


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.188 сек.