русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм деления пополам


Дата добавления: 2015-07-23; просмотров: 697; Нарушение авторских прав


Заняття 12

МЕТОДЫ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ

 

Алгоритм деления пополам

В алгоритм деления пополам или алгоритме равномерного дихотомического поиска испытания проводятся парами. Координаты каждой последующей пары испытаний разнесены между собой на величину , где - требуемая точность решения.

Испытания производятся в середине ТИН (текущий интервал неопределенности). По значениям , полученным в этих точках, одна половина ТИН в силу унимодальности функции исключается из дальнейшего рассмотрения. Величина определяется требуемой точностью решения. Алгоритм относится к классу методов последовательного поиска.

Более строго описанную схему алгоритма можно записать в нижеследующем виде.

  1. Выполняем присваивания , , , .
  2. Вычисляем величины (см. рис. 1)
  3. Вычисляем значения функции ( ).
  4. Если , то выполняем присваивания , , . Иначе - выполняем присваивания , ,
  5. Если , то заканчиваем вычисления. Иначе - выполняем присваивание = +1 и переходим на п.2.

Рис. 1. К определению величин x0r,x1r,x2r.

Рис. 2. Первые две итерации поиска минимума одномерной унимодальной функции с помощью алгоритма равномерного дихотомического поиска.

В качестве приближенного значения точки минимума с равными основаниями может быть принята любая точка последнего текущего интервала неопределенности.

Приведенную схему алгоритма равномерного дихотомического поиска иллюстрирует рис. 2.

Легко видеть, что после одной итерации алгоритма равномерного поиска ТИН уменьшается в 2 раза. Поэтому количество итераций , необходимых для нахождения минимума функции с точностью εx, находится из условия




<== предыдущая лекция | следующая лекция ==>
Занятие 10. | Алгоритм золотого сечения.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.