Разобьем N2 на классы
К 1-ому классу отнесем N1 (1; 1)
| | | |
| 1-ый элемент 1-го множества
| | | 1-ый элемент
2-го множества
| |
Ко 2-му классу N2 {(1;2), (2;1)}
К i-му классу Ni {(a;b)| (a+b=i+1}
Каждый класс будет содержать i пар.
Упорядоченный классы по возрастанию индекса i, а пары внутри класса упорядоченные по направлению первого элемента а.
Занумеруем последовательность классов, что и доказывает счетность множества N2.
Аналогично доказывается счетность множеств N3,…,Nk.
Теорема Кантора:
Множество всех действительных чисел на отрезке [0;1] не является счетным.