русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определение функции алгебры логики


Дата добавления: 2015-07-23; просмотров: 657; Нарушение авторских прав


 

Пусть множество Х состоит из двух элементов 0 и 1, Х={0,1}; множество Y=Xn = {(x1, …,xn) | "i = , xi Î X}.

Двоичный набор –совокупность координат некоторого фиксированного вектора 1, …, хn) Î Хn.

 

Каждому двоичному набору можно поставить в соответствие некоторый номер, равный двоичному числу соответствующему данному набору.

Пусть 1, х2, …, хn) – логический набор, тогда х1*2n-12*2n-2+…+xn*20 – номер набора.

Например:

(0,1,1) = 0×22 + 1×21+1×20 = 3

(0,0,1,1) = 0×23+0×22 +1×21+1×20 = 3

 

Замечание. Чтобы восстановить набор по номеру – нужно знать количество аргументов.

 

Логическая переменная – это переменная, которая может принимать только два значения: истина или ложь (TRUE/FALSE, 1/0).

Функция алгебры логики (булева функция, ФАЛ) – f(x1,x2, …,xn) – это функция, у которой все аргументы есть логические переменные, и сама функция принимает только логические значения.

 

 
 
Количество всевозможных, различных двоичных наборов длиной n равно 2n.

 

 



Например:

Построим всевозможные двоичные наборы длиной n = 3.

По теореме, приведенной выше, их количество равно 2n = 23 = 8.

 

Номер двоичного набора Двоичный набор
х1 х2 х3

Существуют следующие способы описания ФАЛ

- табличный

- графический

- аналитический

- словесный



<== предыдущая лекция | следующая лекция ==>
Функциональные отношения | Графическое представление ФАЛ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.