русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Отношения порядка


Дата добавления: 2015-07-23; просмотров: 546; Нарушение авторских прав


Определение:Бинарное отношение называется предпорядком(квазипорядком) на множестве А, если оно рефлексивно и транзитивно на множестве А.

Определение:Бинарное отношение называется отношениемчастичногопорядка на множестве А, если оно рефлексивно, транзитивно и антисимметрично на множестве А. Обозначение: .

Определение:Бинарное отношение называется отношениемстрогогопорядка на множестве А, если антирефлексивно, антисимметрично и транзитивно на множестве А. Обозначение: .

Определение:Отношение порядка на множестве А, для которого любые два элемента сравнимы, т.е. : или , называется отношениемлинейногопорядка.

Определение:Множество А с заданным на нём частичным порядком называется частичноупорядоченныммножеством. Обозначение: .

Определение:Множество А с заданным на нём строгим порядком называется строгоупорядоченныммножеством. Обозначение: .

Определение:Элемент частично упорядоченного множества называется максимальным, если .

Определение:Элемент частично упорядоченного множества называется наибольшим, если . Обозначение: .

Определение:Элемент частично упорядоченного множества называется минимальным, если .

Определение:Элемент частично упорядоченного множества называется наименьшим, если . Обозначение: .

Всякое конечное частично упорядоченное множество содержит как максимальные, так и минимальные элементы (причём может не единственные). Наибольший и наименьший элементы частично упорядоченного множества (если они существуют) единственны.

Заметим, что всякий наибольший элемент является максимальным, а всякий наименьший элемент является минимальным. Обратные утверждения, вообще говоря, неверны.

Рассмотрим упорядоченное множество А с введённым на нём отношением порядка . Говорят, что элемент y покрывает элемент x, если и не существует такого элемента , что и .



Если множество А конечно, то упорядоченное множество можно представить в виде схемы, в которой каждый элемент изображается точкой на плоскости, и если y покрывает x, то точки x и y соединяют отрезком, причём точку, соответствующую x, располагают ниже. Такие схемы называют диаграммами Хассе.



<== предыдущая лекция | следующая лекция ==>
Специальные бинарные отношения. Отношения эквивалентности | Упражнения


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.035 сек.