русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Степеневі ряди. Теорема Коші-Адамара. Інтервал і радіус збіжності степеневого ряду. Властивості суми степеневого ряду


Дата добавления: 2015-07-09; просмотров: 1255; Нарушение авторских прав


Степеневим рядом називається функціональний ряд

Число називають радіусом збіжності степеневого ряду, а проміжок - інтервалом збіжності (областю збіжності).Якщо всі коефіцієнти ряду ненульові, то радіус збіжності рівний наступній границі

при умові, що вона існує (скінченна чи нескінченна).

Для рядів вигляду

радіус збіжності визначається за формулою , проте інтервал збіжності з нерівності

Теорема не дає відповіді про збіжність на кінцях інтервалу, тому їх слід перевіряти окремо за відомими ознаками збіжності.

Розглянемо приклади на знаходження області збіжності степеневого ряду.

Теорема 1 (неперервність суми степеневого ряду). Сума степеневого ряду (13.39) є неперервною всередині проміжку збіжності. Але при члени ряду (13.39) за абсолютною величиною не більші відповідних членів ряду (13.49). Тому, за ознакою Вейєрштрасса, ряд (13.39) рівномірно збігається на відрізку і його сума буде неперервною на цьому відрізку.

Наслідок. Якщо границі інтегрування , лежать всередині інтервалу збіжності степеневого ряду , то за теоремою 3 (п.13.9.3) його можна почленно інтегрувати на проміжку , оскільки він буде рівномірно збігатися на , що містить проміжок

 



<== предыдущая лекция | следующая лекция ==>
Критерії Коші збіжності ряду. Абсолютно та умовно збіжні ряди. Властивості абсолютно та умовно збіжних рядів. | Ряд Тейлора. Розклад елементарних функцій в степеневий ряд. Розкладання степеневий ряд функції.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.016 сек.