( f (x) + g (x) )’ = f ’(x) + g’(x)
(k(f(x))’ = kf ’ (x)
(f(x) g(x))’ = f ’(x)·g(x) + f(x)·g’(x)
(f(x)/g(x))’=(f ’(x)·g(x) - f(x)·g’(x))/g2 (x)
(xn)’ = nx n-1
(tg x)’ = 1/ cos2 x
(ctg x)’ = - 1/ sin2 x
(f (kx + m))’ = kf ’(kx + m)
Уравнение касательной к графику функции
y = f ’(a) (x-a) + f(a)
Площадь S фигуры, ограниченной прямыми x=a, x=b
S = ∫( f(x) – g(x)) dx
Формула Ньютона-Лебница
∫ab f(x) dx = F(b) – F (a)
t
| π/4
| π/2
| 3π/4
| π
|
cos
| √2/2
|
| -√2/2
|
|
sin
| √2/2
|
| √2/2
|
|
t
| 5π/4
| 3π/2
| 7π/4
| 2π
|
cos
| -√2/2
|
| √2/2
|
|
sin
| -√2/2
| -1
| -√2/2
|
|
t
|
| π/6
| π/4
| π/3
|
tg
|
| √3/3
|
| √3
|
ctg
| -
| √3
|
| √3/3
|
sin x = b x = (-1)n arcsin b + πn
cos x = b x = ± arcos b + 2 πn
tg x = b x = arctg b + πn
ctg x = b x = arcctg b + πn
Теорема синусов: a/sin α = b/sin β = c/sin γ = 2R
Теорема косинусов: с2=a2+b2-2ab cos y
Неопределенные интегралы
∫ dx = x + C
∫ xn dx = (x n +1/n+1) + C
∫ dx/x2 = -1/x + C
∫ dx/√x = 2√x + C
∫ (kx+b) = 1/k F(kx + b)
∫ sin x dx = - cos x + C
∫ cos x dx = sin x + C
∫ dx/sin2 x = -ctg + C
∫ dx/cos2 x = tg + C
∫ x r dx = x r+1/r+1 + C
Логарифмы
1. loga a = 1
2. loga 1 = 0
3. loga (bn) = n loga b
4. log An b = 1/n loga b
5. loga b = log c b/ log c a
6. loga b = 1/ log b a
Градус
|
|
|
|
|
sin
|
| 1/2
| √2/2
| √3/2
|
cos
|
| √3/2
| √2/2
| 1/2
|
tg
|
| √3/3
|
| √3
|
t
| π/6
| π/3
| 2π/3
| 5π/6
|
cos
| √3/2
| 1/2
| -1/2
| -√3/2
|
sin
| 1/2
| √3/2
| √3/2
| 1/2
|
|
|
|
|
|
| √3/2
| √2/2
| 1/2
|
|
| -1/2
| -√2/2
| -√3/2
| -1
|
-
| -√3
| -1
| √3/3
|
|
t
| 7π/6
| 4π/3
| 5π/3
| 11π/6
|
cos
| -√3/2
| -1/2
| 1/2
| √3/2
|
sin
| -1/2
| -√3/2
| -√3/2
| -1/2
|
Формулы двойного аргумента
cos 2x = cos2x – sin2 x = 2 cos2 x -1 = 1 – 2 sin2 x = 1 – tg2 x/1 + tg2 x
sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg2 x
tg 2x = 2 tg x/ 1 – tg2 x
ctg 2x = ctg 2 x – 1/ 2 ctg x
sin 3x = 3 sin x – 4 sin3 x
cos 3x = 4 cos3 x – 3 cos x
tg 3x = 3 tg x – tg3 x / 1 – 3 tg2 x
sin s cos t = (sin (s+t) + sin (s+t))/2
sin s sin t = (cos (s-t) - cos (s+t))/2
cos s cos t = (cos (s+t) + cos (s-t))/2