Определение 1. График функции y = f(x) имеет на интервале (а, b) выпуклость, направленную вниз (вверх), если он расположен не ниже (не выше) любой касательной к графику функции на (а, b) (рис.1). ТЕОРЕМА 1. Если функция у = f(х) имеет на интервале (а, b) вторую производную и f"(x) ≥ 0 (f"(x) ≤ 0) на (а, b), то график функции имеет на (а, b) выпуклость, направленную вниз (вверх). Определение 2. Точка М(x0, f(x0)) называется точкой перегиба графика функции у = f(x), если в точке М график имеет касательную и существует такая окрестность точки x0, в пределах которой график функции f(x) имеет разные направления выпуклости ТЕОРЕМА 2. (необходимое условие существования точки перегиба). Пусть график функции у = f(x) имеет перегиб в точке M(x0, f(x0)) и функция f(x) имеет в точке x0 непрерывную вторую производную. Тогда
Отметим, что не всегда условие f"(x0) = 0 означает наличие точки перегиба на графике функции у = f(x).ТЕОРЕМА 3 (достаточное условие существования точки перегиба). Пусть в некоторой окрестности точки x0 вторая производная функции у = f(x) имеет разные знаки слева и справа от x0. Тогда график у = f(x) имеет перегиб в точке М(x0, f(x0)).Теорема верна и для случая, когда f"(x) существует в некоторой окрестности точки x0 за исключением самой точки x0 и существует касательная к графику функции в точке М.