русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Прямое и обратное преобразования Лапласа – команды laplace, ilaplace


Дата добавления: 2015-06-12; просмотров: 12231; Нарушение авторских прав


 

Преобразование Лапласа любой комплексной функции f(t) действительной переменной t имеет вид

L(s) = f(t)e-stdt.

Функцию f(t) принятоназывть оригиналом, а функцию L(s) – изображением. Функция f(t) должна удовлетворять следующим условиям:

а) f(t) является непрерывной функцией для всех значений t, принадлежащих области определения. (Допускается наличие разрывов первого рода в конечном числе точек, расположенных на интервалах конечной длины. Количество таких интервалов должно быть конечным числом);

б) f(t) = 0 при t < 0;

в) существуют числа M > 0 и p ≥ 0 такие, что для всех tf(t)│ < Mept (p называется показателем роста │f(t)│).

Некоторые простейшие) преобразования Лапласа приведены в таблице 7.1.

 

Таблица 7.1.Некоторые преобразования Лапласа

 

f(t) L(s) = f(t)e-stdt.  
1 s-1
e-at (s+a)-1
sinat a(s2+a2)-1
tn n!s-n-1
e-atcoswt
tne-at

 

В MATLAB преобразование Лапласа функции f(t) осуществляется с помощью команды laplace(F,t,s).

Найдем с помощью этой команды изображения заданных в таблице 7.1 оригиналов f(t):

>> syms a t w s

>> n=sym('n','positive');

>> laplace(1,t,s)

ans =

1/s

>> laplace(exp(-a*t),t,s)

ans =

1/(s+a)

>> laplace(sin(a*t),t,s)

ans =

a/(s^2+a^2)

>> laplace(t^n,t,s)

ans =

s^(-n-1)*gamma(n+1)

>> laplace(exp(-a*t)*cos(w*t),t,s)

ans =

(s+a)/((s+a)^2+w^2)

>> laplace(t^n*exp(-a*t),t,s)

ans =

gamma(n+1)*(s+a)^(-n-1)

Полученные изображения совпадают с табличными, если учесть, что

gamma(n+1) = n! для целых n (см. разд. 7.10).

Пример:

Найти изображение функции f(t) = e-2tsin2tcos3t.

Решение:

>> syms t s



>> laplace(exp(-2*t)*sin(2*t)*cos(3*t),t,s)

ans =

5/2/((s+2)^2+25)-1/2/((s+2)^2+1)

>> pretty(ans)

1 1

5/2 ------------- - 1/2 ------------

2 2

(s + 2) + 25 (s + 2) + 1

>> factor(ans)

ans =

2*(s^2+4*s-1)/(s^2+4*s+29)/(s^2+4*s+5)

>> pretty(ans)

s + 4 s - 1

2 ------------------------------

2 2

(s + 4 s + 29) (s + 4 s + 5)

Итак,

L(s) = 2.

 

Пример:

Найти изображение функции f(t) = .

Решение:

При обращении к laplace команда возвращается без результата:

>> laplace(1/t,t,s)

ans =

laplace(1/t,t,s)

Это означает что либо изображения не существует, либо системе MATLAB не удалось его найти.

Существуют различные модификации laplace (справку можно получить с помощью команды doc laplace).

Обратное преобразование Лапласа имеет вид

 

f(t) = L(s)estds.

В среде MATLAB обратное преобразование Лапласа функции L(s) можно получить с помощью команды ilaplace(L,s,t). Найдем с ее помощью оригиналы заданных в таблице 7.1 изображений L(s):

>> syms a t w s

>> n=sym('n','positive');

>> ilaplace(1/s,s,t)

ans =

>> ilaplace(1/(s+a),s,t)

ans =

exp(-a*t)

>> ilaplace(a/(s^2+a^2),s,t)

ans =

a/(a^2)^(1/2)*sin((a^2)^(1/2)*t)

>> ilaplace(s^(-n-1)*gamma(n+1),s,t)

ans =

t^n

>> ilaplace((s+a)/((s+a)^2+w^2),s,t)

ans =

exp(-a*t)*cos(w*t)

>> ilaplace(gamma(n+1)*(s+a)^(-n-1),s,t)

ans =

exp(-a*t)*t^n

Полученные оригиналы совпадают с табличными.

Пример:

Найти оригинал полученного ранее изображения

 

2

функции f(t) = e-2tsin2tcos3t.

Решение:

>> syms t s



>> ilaplace(2*(s^2+4*s-1)/(s^2+4*s+29)/(s^2+4*s+5),s,t)

ans =

1/2*exp(-2*t)*sin(5*t)-1/2*exp(-2*t)*sin(t)

>> factor(ans)

ans =

1/2*exp(-2*t)*(sin(5*t)-sin(t))

Поскольку (sin5t - sint) = sin2tcos3t, то оригинал найден верно.

Пример:

Найти оригинал изображения

L(s) = .

 

Решение:

Команда ilaplace возвращает решение, выраженное через функцию Хевисайда:

>> syms t s a

>> ilaplace(exp(-2*s)/(s+a),s,t)

ans =

Heaviside(t-2)*exp(-a*(t-2))

Функция Хевисайда (единичная функция) определяется следующим образом:

 

δ0(t)=

 

Следовательно, найденный оригинал имеет вид

 

f(t)=

 

Пример:

Найти оригинал изображения

L(s) = .

 

Решение:

Команда ilaplace возвращает решение, выраженное через корни уравнения z4+1 = 0:

>> syms t s



>> ilaplace((s^4-1)/(s^5+s),s,t)

ans =

-1+2*sum(1/4*exp(_alpha*t),_alpha = RootOf(_Z^4+1))

Команда vpa вычисляет приближенное значение оригинала с заданным количеством текущих цифр:

>> vpa(ans,4)

ans =

-1.+1.000*exp(-.7071*t)*cos(.7071*t)+1.000*exp(.7071*t)*cos(.7071*t)

Пример:

Найти оригинал изображения

L(s) = .

 

Решение:

Команда ilaplace возвращается без результата:

>> syms t s



>> ilaplace(exp(2*s)/(s+3)^2,s,t)

ans =

ilaplace(exp(2*s)/(s+3)^2,s,t)

Это означает что либо оригинала не существует, либо системе MATLAB не удалось его найти.

Существуют и другие модификации ilaplace (справку можно получить, введя команду doc ilaplace).



<== предыдущая лекция | следующая лекция ==>
Решение дифференциальных уравнений – команда dsolve | Графики символьных функций – команды ezplot, ezpolar


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.