Все параметрические методы статистики работают с интервальной шкалой, в отличие от непараметрических методов, ориентированных прежде всего на первые две шкалы. Поясним отличия этих методов.
При рассмотрении большинства статистических методов предполагается, что наблюдения, о которых идет речь, выражены в интервальной шкале и являются реализациями случайной величины, распределение которой принадлежит некоторому параметрическому семейству распределений. Например, случайная величина имеет нормальное, или пуассоновское, или другое распределение. То есть, мы предполагаем, что известна форма распределения, например, мы можем предполагать нормальную N (μ, δ) модель, но с неизвестными параметрами μ и δ. Методы оценивания и проверки гипотез позволяют делать выводы о неизвестных параметрах, при этом ценность любых заключений до некоторой степени должна зависеть от адекватности исходного предположения о параметрическом семействе, то есть о форме распределения. Однако существуют случайные величины, которые не подчиняются одной из распространенных форм распределения. Следовательно, к ним нельзя применить те математические методы, которые разработаны для параметрических распределений. Поэтому для таких признаков разработаны специальные математические модели, которые получили название непараметрических или свободных от распределения.
Таким образом, можно выделить две группы методов статистики: параметрические и непараметрические.
Преимущество параметрических методов состоит в том, что для них существует хорошо разработанный математический аппарат. Однако применение этих методов, кроме прочего, предполагает большой объем выборки. Параметрические методы используют для количественных признаков.
Для анализа номинальных и ранговых переменных используются только непараметрические методы, которые не требуют предварительных предположений относительно вида исходного распределения. В этом их достоинство. Но есть и недостаток – снижение т.н. мощности (чувствительности к различиям объектов). Поясним это.
Напомним, что прежде чем приступить к анализу результатов эксперимента, исследователь выдвигает две взаимоисключающие гипотезы. Одна из них - статистическая гипотеза, которую исследователь обычно предполагает отклонить (т.н. нулевая гипотеза Н0: например, изучаемые сорта не отличаются по урожайности). Альтернативная гипотеза (Н1) фактически отрицает нулевую гипотезу. В альтернативной гипотезе обычно содержатся выдвигаемые исследователем предположения (есть отличия).
Выделяют два типа статистических ошибок анализа. Ошибка первого рода (ошибка α – типа): отклоняется нулевая гипотеза, которая в действительности верна. Ошибка второго рода (ошибка β – типа): принимаем нулевую гипотезу, которая в действительности ложная.
Мощностью или чувствительностью статистического критерия (метода) называется вероятность того, что в результате его применения будет принято правильное решение (Н1) при действительно ложной нулевой гипотезе. Мощность критерия зависит от объема выборки, уровня значимости, направленности нулевой и альтернативной гипотез, надежности экспериментальных данных, приборов и от самого статистического метода. При равных условиях параметрические методы более мощные, чем непараметрические. Но мощность непараметрических методов возрастает с увеличением объема выборки.
Каждому типу шкалы соответствует своя статистическая техника. Для номинальных шкал часто используется критерий χ2 (хи-квадрат). Для порядковых шкал – ранговые статистики. Для интервальных шкал – весь арсенал статистических критериев.
Алгоритмы и примеры вычисления непараметрических критериев.