русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Параметрические и непараметрические методы статистики.


Дата добавления: 2015-06-12; просмотров: 14262; Нарушение авторских прав


Все параметрические методы статистики работают с интервальной шкалой, в отличие от непараметрических методов, ориентированных прежде всего на первые две шкалы. Поясним отличия этих методов.

При рассмотрении большинства статистических методов предполагается, что наблюдения, о которых идет речь, выражены в интервальной шкале и являются реализациями случайной величины, распределение которой принадлежит некоторому параметрическому семейству распределений. Например, случайная величина имеет нормальное, или пуассоновское, или другое распределение. То есть, мы предполагаем, что известна форма распределения, например, мы можем предполагать нормальную N (μ, δ) модель, но с неизвестными параметрами μ и δ. Методы оценивания и проверки гипотез позволяют делать выводы о неизвестных параметрах, при этом ценность любых заключений до некоторой степени должна зависеть от адекватности исходного предположения о параметрическом семействе, то есть о форме распределения. Однако существуют случайные величины, которые не подчиняются одной из распространенных форм распределения. Следовательно, к ним нельзя применить те математические методы, которые разработаны для параметрических распределений. Поэтому для таких признаков разработаны специальные математические модели, которые получили название непараметрических или свободных от распределения.

Таким образом, можно выделить две группы методов статистики: параметрические и непараметрические.

Преимущество параметрических методов состоит в том, что для них существует хорошо разработанный математический аппарат. Однако применение этих методов, кроме прочего, предполагает большой объем выборки. Параметрические методы используют для количественных признаков.

Для анализа номинальных и ранговых переменных используются только непараметрические методы, которые не требуют предварительных предположений относительно вида исходного распределения. В этом их достоинство. Но есть и недостаток – снижение т.н. мощности (чувствительности к различиям объектов). Поясним это.



Напомним, что прежде чем приступить к анализу результатов эксперимента, исследователь выдвигает две взаимоисключающие гипотезы. Одна из них - статистическая гипотеза, которую исследователь обычно предполагает отклонить (т.н. нулевая гипотеза Н0: например, изучаемые сорта не отличаются по урожайности). Альтернативная гипотеза (Н1) фактически отрицает нулевую гипотезу. В альтернативной гипотезе обычно содержатся выдвигаемые исследователем предположения (есть отличия).

Выделяют два типа статистических ошибок анализа. Ошибка первого рода (ошибка α – типа): отклоняется нулевая гипотеза, которая в действительности верна. Ошибка второго рода (ошибка β – типа): принимаем нулевую гипотезу, которая в действительности ложная.

Мощностью или чувствительностью статистического критерия (метода) называется вероятность того, что в результате его применения будет принято правильное решение (Н1) при действительно ложной нулевой гипотезе. Мощность критерия зависит от объема выборки, уровня значимости, направленности нулевой и альтернативной гипотез, надежности экспериментальных данных, приборов и от самого статистического метода. При равных условиях параметрические методы более мощные, чем непараметрические. Но мощность непараметрических методов возрастает с увеличением объема выборки.

Каждому типу шкалы соответствует своя статистическая техника. Для номинальных шкал часто используется критерий χ2 (хи-квадрат). Для порядковых шкал – ранговые статистики. Для интервальных шкал – весь арсенал статистических критериев.

 

Алгоритмы и примеры вычисления непараметрических критериев.



<== предыдущая лекция | следующая лекция ==>
Унификация шкал признаков. | Номинальная шкала.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.