русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Модель неупорядоченной сетки связей


Дата добавления: 2013-12-23; просмотров: 1012; Нарушение авторских прав


Методы построения модели

Выше отмечалось (п.2.1), что согласно анализу экспериментальных данных, полученных дифракционными методами в оксидных стеклах, имеются точно такие же структурные единицы, как и в соответствующих кристаллах (тетраэдры, треугольники, бипирамиды). Дисперсия параметров этих структурных единиц – "структурных кирпичей" – в стекле сравнительно невелика. Беспорядок структуры стекла связан в основномсо значительным произволом во взаимной ориентации структурных единиц друг относительно друга.

Продолжительное время существование этих структурных единиц приписывалось исключительному влиянию ковалентных связей. Приведённые выше результаты моделирования, когда при использовании чисто ионного парного потенциала удалось получить автоматически структурные единицы оксидных стёкол, явились неожиданными. Однако, эти результаты никоим образом не указывают на то, что при моделировании структуры стёкол можно ограничиться рассмотрением только ионного взаимодействия. Во-первых, есть стёкла и аморфные материалы, где взаимодействие атомов является практически полностью ковалентным. Во-вторых, структурные единицы хотя и получаются автоматически при ионном взаимодействии, но имеют форму менее упорядоченную, чем это следует из анализа экспериментальных данных. Поэтому значительное внимание уделяется развитию статистических моделей стёкол и аморфных материалов, в которых взаимодействие атомов считается число ковалентным.

Наиболее известным примером такой модели является «неупорядоченная сетка связей» (НСС), в которой каждый сорт атомов имеет вполне определенную, исходно заданную координацию [8] Положения атомов считаются узлами сетки. Линии, соединяющие атомы с ближайшими соседями, – звенья сетки. Используется эта модель для имитации структуры аморфных полупроводников и однокомпонентных оксидных стекол простейшего состава (т.е. окислов SiО2, P2O5, B2O3, TeO2). Координационные числа атомов в этих материалах надежно установлены экспериментально дифракционными методами.



Таким образом, основная особенность модели НСС состоит в том, что она вполне определена топологически. Атомы располагаются в узлах сетки так, что атомы одного типа всегда связаны с одинаковым числом ближайших соседей. Например, в стеклах SiO2 атомы Si связаны с четырьмя атомами кислорода, а атомы кислорода связаны с парой атомов Si или.

Такую сетку можно представлять как геометрическую идеализацию ковалентных связей. Так как в стекле имеются сравнительно жесткие структурные единицы, в модели полагается, что длины связей и углы между связями, определяющие форму структурных единиц, могут изменяться только в незначительных пределах.

Звенья сетки связей образуют кольца (см п. 2.2.2). Такие кольца прослеживаются в структуре кристаллов. В кристаллах определённой структуры число вариантов колец разной длины невелико и, обычно, это кольца с чётным числом звеньев. Специфика структуры стёкол и аморфных материалов состоит в том, что в них имеются кольца как с чётным, так и с нечётным числом звеньев, причём дисперсия по длине звеньев гораздо больше, чем в случае кристаллов.

По-видимому, впервые структурная модель неупорядоченной сетки связей была построена Беллом и Дином, которые использовали ее для расчета колебательных спектров стекол, представляющих по своему химическому составу важные стеклообразватели SiO2, GeO2 и BeF2. Во всех трёх случаях сетка связей была построена из тетраэдров, имеющих общие вершины [27].

Модель содержала 600 атомов и была построена "вручную" из шариков и стержней на основе правил, обеспечивающих получение непрерывной тетраэдрической сетки. Таким образом, хотя ЭВМ не использовалась, определенный алгоритм построения модели автора применяли.

Длительное время все модели НСС, данные о которых публиковались в литературе, строились только вручную. Дело в том, что при компьютерном построении такой модели необходимо решить следующие две весьма серьёзные проблемы.

Во-первых, это получение исходной неупорядоченной конфигурации, так как в ней все атомы должны иметь вполне определённые заданные координационные числа.

Вторую серьёзную проблему представляют граничные условия. Все первые модели сетки связей представляли собой кластеры неправильной формы.

Обе названные проблемы позволяет решить приём, при котором построение неупорядоченной сетки на первом этапе производится путём нарушения порядка в кристаллической структуре удовлетворяющей необходимым топологическим требованиям.

Такой приём применялся при построении моделей аморфного германия, аморфного кремния и кварцевого стекла. Во всех этих случаях структуры построены из тетраэдров. В кварце – это тетраэдры [SiO4]. В аморфных полупроводниках каждый атом соединяется ковалентной связью с четырьмя другими атомами. Кристаллы германия и кремния имеют одинаковую кубическую структуру, которую в кристаллографии называют «структурой алмаза».

Моделирование начиналось с рассмотрения структуры алмаза, которая делилась на кубические ячейки. В первой работе, где строилась такая модель, ячейки содержали по 216 атомов. Введение ячеек позволило использовать периодические граничные условия такого же вида, как описанные при рассмотрении метода Монте-Карло (п. 2.3.2). Нарушение кристаллической структуры осуществлялось путём специально рода перестроек связей в паре соседних тетраэдров [28]

Рис.2.15 Изменение распределения связей при генерации структуры стеклообразного кварца. Связи и разрываются и вместо них образуются две новые связи и [28]  

При каждой такой перестройке сохранялась тетраэдрическая координация всех атомов, но углы между связями и длины связей несколько изменялись. Самое главное то, что при перестройке могли появиться кольца с нечётным числом звеньев, которые запрещены в кристаллах структуры алмаза.

Взаимодействие атомов описывалось потенциалом Китинга, в котором первое слагаемое учитывает двух-, а второе – трёхчастичное взаимодействие:

(2.18)

В выражении (2.18) – потенциальная энергия модели, расстояние между атомами и ,

Расчёты колебательного спектра.

Фонон в решётке представляет волнообразное возбуждение, распространяющееся через всю структуру. В неупорядоченных системах отдельное атомное колебательное возбуждение может быть сильно локализовано, и поэтому не обладать определённым значением импульса и волнового вектора.

Рис. 2.16 Сравнение колебательного спектра кварца с результатами измерения спектров ИК и КР

В основе модели, которая используется при рассмотрении колебаний как кристаллов, так и стёкол лежит представление, согласно которому атомы системы совершают свободные колебания с малой амплитудой около положений равновесия.

Определение частот и нормальных колебаний сводилось к стандартной задаче на собственные значения. В случае стёкол математические трудности её решения были значительны.

Рассматривалось только взаимодействие ближайших атомов. Использовались граничные условия двух типов: типа «свободные концы» и типа «закреплённые концы». В первом случае граничные атомы могли свободно колебаться под влиянием соседних атомов. Во втором, – граничные атомы с оборванными связями были связаны с одной стороны с жёсткой стенкой.

Вычисленные спектры хорошо согласуются с экспериментальными результатами по колебательным спектрам рассмотренных стёкол. Так же как при моделировании по методу молекулярной динамики (см. 2.4.3) рассчитывалась плотность колебательных состояний . Полного согласия вычисленных спектральных контуров с экспериментальными спектрами ИК поглощения и спектрами комбинационного рассеяния ждать не приходится, так как экспериментальные спектры зависят от правил отбора, величин дипольных моментов и поляризуемостей. Согласия в данном случае следует, прежде всего, для значений частот, соответствующих максимумов. А для них имеется неплохое согласие модельного расчёта с экспериментальными данными.

Модельный расчёт позволил получить данные по локализации отдельных типов колебаний, которые нельзя получить из эксперимента, но которые чрезвычайно важны, так как ведут к пониманию природы атомных колебаний в рассматривавшихся стёклах.

 



<== предыдущая лекция | следующая лекция ==>
Неупорядоченная плотнейшая упаковка шаров. | Проблемы моделирования спектров лазерных материалов, активированных ионами РЗЭ.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.