русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Модели, заданные в виде уравнений в частных производных


Дата добавления: 2013-12-23; просмотров: 3206; Нарушение авторских прав


Контрольные вопросы к лекции 4

1. К какому типу можно отнести модель кратчайшего расстояния между двумя точками?

2. Является ли найденное значение угла b точкой минимума пути?

3. Является ли путь S при найденном значении угла b кратчайшим?

 

 


Лекция 5
2.5. Математическая модель в виде
обыкновенных дифференциальных уравнений

 

Математическая модель в виде одного или нескольких обыкновенных дифференциальных уравнений (ОДУ) широко используются при изучении переходных процессов в системах автоматического регулирования (САР), при описании баллистики летательных аппаратов, а также при описании процессов движения (потоки, частицы, механические элементы).

В простейшем случае модель может иметь вид линейного дифференциального уравнения n-го порядка:

или системы дифференциальных уравнений 1-го порядка

Часто встречаются смешанные задачи, а также нелинейные ОДУ.

Модель, заданная в виде дифференциальных уравнений, должна включать в себя необходимый набор начальных условий:

или x1(0) = C1, x2(0) = C2,…, xn(0) = Cn .

Исследование моделей, заданных в виде обыкновенных дифференциальных уравнений, осуществляется аналитическими и численными методами. Наиболее полными являются аналитические решения, обеспечивающие всесторонний анализ полученных результатов. Но такие решения получены лишь для ограниченного числа дифференциальных уравнений. Численные методы решения позволяют найти лишь конкретные значения изучаемой функции при заданной комбинации исходных данных. Для анализа модели можно использовать некоторую совокупность решений. Однако, очевидно, что результаты анализа в этом случае могут зависеть от выбора этой совокупности.

 
 

В качестве простейшего примера математической модели механической системы может быть рассмотрена модель движения груза массой m, закрепленного на вертикальной стенке с помощью пружины жесткостью С и совершающего колебательное движение вдоль оси х в среде с вязкостью n (Рис. 2.10).



Возмущающая сила, вызывающая колебания, зависит от времени f(t). Наряду с возмущающей силой f(t) на груз действует сила инерции , сила вязкого трения , усилие пружины . Все эти силы тормозят движение груза.

 

Согласно принципу Даламбера сумма всех сил, действующих на груз должна равняться нулю:

. (2.18)

Начальные условия характеризуют начальное положение и начальную скорость груза:

x(0) = x0; . (2.19)

Уравнение (2.18) совместно с начальными условиями (2.19) представляет собой математическую модель рассматриваемой механической системы.

 

Ряд задач, связанных с использованием физических полей, приводит к моделям в виде дифференциальных уравнений в частных производных.

Особенностью таких задач является то, что изучаемые параметры изменяются не только во времени, но и зависят от координат x, y, z рассматриваемого пространства. Такие модели называются нестационарными. Модели, в которых параметры не зависят от времени, называются стационарными.

К таким моделям сводятся описания полей температур в элементах конструкции двигателя и полей скоростей при течении жидкости (газа). Уравнениями в частных производных описываются колебания элементов конструкции и поля напряжений, возникающих при работе этих элементов.

Линейное дифференциальное уравнение в частных производных имеет вид

.

Математическая модель, описанная дифференциальными уравнениями в частных производных, должна включать в себя необходимые для решения задачи краевые условия:

1. Должна быть задана область D, ограниченная поверхностью (на плоскости – кривой) G , в которой определяется решение.

2. Должны быть заданы условия на границе G этой области.

В случае нестационарного поля эти граничные условия, так же как и сама область могут меняться во времени.

Граничные условия могут быть 1-го, 2-го и 3-го рода:

а) Граничные условия 1-го рода предусматривают задание на границе величины искомой функции:

– для стационарного поля;

– для нестационарного поля.

б) Граничные условия 2-го рода – предусматривают задание производной искомой функции:

– для стационарного поля;

– для нестационарного поля.

в) Граничные условия 3-го рода – предусматривают комбинации функции и ее производной:

– для стационарного поля;

– для нестационарного поля.

3. Для нестационарных полей должны быть заданы одно или два начальных условия, характеризующих состояние поля в начальный момент времени:

(i = 1, 2, 3).

Здесь xi – координаты пространства.

Совокупность уравнений и краевых (и начальных) условий полностью определяет модель и позволяет провести ее исследование.

Решение часто задается в виде семейств изолиний F = const (Рис. 2.11).

 
 

В качестве примера рассмотрим хорошо изолированный металлический пруток, нагреваемый с одной стороны. С другой стороны помещен измеритель температуры (Рис. 2.12). Величина подогрева x(t) в момент времени t является входным сигналом, а измеряемая на другом конце температура y(t) – выходным сигналом.

Обозначим через x расстояние от измерителя до точки прутка. Температура в этой точке z будет описываться функцией вида

z = z(t, x).

Уравнение теплопроводности для одномерного случая для определения функции z будет иметь вид:

,

где K – коэффициент теплопроводности.

Начальным условием в данном случае является начальное распределение температуры (при t = 0) по прутку: z(0, x) = j(x).

Граничные условия определяются тремя условиями:

а) Нагрев прутка на правом конце

.

б) На левом конце подвод тепла отсутствует

.

в) Показания на измерителе температур (x = 0) в момент времени t определяется следующим выражением

.

Таким образом, для вычисления температуры на расстоянии L от измерителя по формуле для y(t) необходимо проинтегрировать дифференциальное уравнение с учетом начальных и граничных условий, т.е. получить функцию z(t,x). Затем следует проградуировать измеритель температуры, т.е. определить соответствие между x(t) и y(t), задавая различные значения x(t) и вычисляя .

 



<== предыдущая лекция | следующая лекция ==>
Линейные математические модели | Стохастические модели


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.