Подписано в печать…... Формат….. Усл. печ. л. 1,9.
Тираж 20 экз. Заказ №…..
Издательство федерального государственного бюджетного образовательного учреждения высшего профессионального образования
«Тюменский государственный нефтегазовый университет».
625000, Тюмень, ул. Володарского, 38.
Отдел оперативной полиграфии издательства.
625039, Тюмень, ул. Киевская, 52
Дополнительно каждый студент (самостоятельно) рассматривает 2 примера.
Пояснения к работе:
Перевод целых чисел из десятичной системы в двоичную систему можно осуществить при помощи многократного деления на 2.
Для записи, например, числа (173)10 в двоичной системе нужно найти такие цифры А0,A1,A2, ….,An, равные 0 или 1 чтобы
А02n + A12n-1+... + Аn-12 + Аn= 173. (1)
Разделим правую и левую части равенства (1) на 2. Так как Аi равно 0 или 1 то в частном от деления левой части на 2 получим А02n-1 + A12n-2 + ... + Аn-22+ Аn-1, а в остатке число Аn.
Получившиеся частное и остаток должны соответственно равняться частному и остатку от деления правой части равенства (1) на 2, поэтому An=1;
A02n-1+ A12n-2+ ... +An-22 +An-1 = 86. (2)
Разделим теперь на 2 обе части равенства (2) и приравняем получившиеся частные и остатки. В результате будем иметь:
An-1=0;
A02n-2 +A12n-3+... + An-32+An-2 = 43. (3)
Разделим еще раз на 2 обе части равенства (3) и, сравнив частные и остатки, получим:
An-2=1;
A02n-3 + A12n-4 + ... +An-42 + An-3 = 21.
Аналогичным образом найдем значения остальных цифр Ai. В результате получим: А0= 1; A1 = 0; А2 = I; А3= 0; А4=1; А5 =1; А6=0; А7=1.
Таким образом, нахождение двоичных цифр числа сводится к делению соответствующих частных на 2 и нахождению остатков отделения.
Правило перевода чисел из десятичной системы счисления в восьмеричную состоит в делении переводимого числа и получающихся частных на 8. Остатки от деления и последнее частное, которые при этом получаются, и являются искомыми восьмеричными цифрами. Иными словами, алгоритм (правило) перевода аналогичен используемому для перевода десятичного числа в двоичное, только вместо деления на 2 выполняется деление на 8.
Перевод числа из восьмеричной системы в двоичную и обратно очень прост. Чтобы число, записанное в восьмеричной системе счисления, записать в двоичной системе, нужно каждую восьмеричную цифру заменить тройкой двоичных цифр: (0)8 = (000)2; (1)8 = (001)2; (2)8 = (010)2; (3)8 = (011)2; (4)8 = (100)2; (5)8 = (101)2;(6)8= (110)2;(7)8 = (111)2.
При переводе из двоичной системы в восьмеричную разбивают двоичное число справа налево на группы из трех двоичных цифр каждая. Сначала выделяют крайнюю правую группу (последние три цифры двоичной записи), затем следующую группу (три цифры слева от крайней группы) и т.д. Если в последней группе остается менее трех цифр, то вместо недостающих цифр ставят нули. Заменив каждую группу соответствующей восьмеричной цифрой, получают число, записанное в восьмеричной системе счисления.
Например, двоичное число 11001101 разбивается на следующие группы; 011; 001; 101. Поскольку (011)2= (3)8; (001)2 = (1)8, (101)2 = (5)8, то в восьмеричной системе это будет число 315, т.е. (11001101)2 = (315)8.
При переводе из двоичной системы в шестнадцатеричную двоичное число разбивают на группы из четырех цифр каждая. Такие группы называются тетрадами. Тетрады для шестнадцатеричных цифр от 0 до 7 подобны тем группам, что приведены выше для этих же восьмеричных цифр (только добавляется 0 слева). Остальным шестнадцатеричным цифрам соответствуют следующие тетрады:(8)16 = (1000)2; (9)16= (1001)2; (А)16= (1010)2; (В)16 = (1011)2; (С)16= (1100)2; (D)16= (1101)2; (Е)16= (1110)2; (F)16= (1111)2.
Правила и примеры выполнения арифметических
операций с числами, записанными в двоичной системе счислении.
Сложение трех однозначных двоичных чисел производится по
следующим правилам:
(0)2+ (0)2+(0)2=(0)2 (1)2+(1)2+(0)2=(10)2
(1)2+(0)2+(0)2=(1)2 (1)2+ (0)2+(1)2=(10)2
(0)2+ (1)2+(0)2=(1)2 (0)2+ (1)2+(1)2=(10)2
(0)2+ (0)2+(1)2=(1)2 (1)2+ (1)2+(1)2=(11)2
На основании этих равенств, производится сложение многозначных двоичных чисел. Рассмотрим следующий пример:
111 111 - единицы переноса
(101010101)2 - первое слагаемое
+
(1110011)2 - второе слагаемое
________________
(111001000)2
Сложение начинают с разряда единиц (1)2 + (1)2 = (10)2.Ноль записывают под чертой, а единицу переносят в следующий разряд — разряд двоек (надписывают сверху). Переходят к разряду двоек(1)2 + (0)2 + (1)2= (10)2. Ноль записывают, а единицу переносят в разряд четверок. Переходят к разряду четверок: (1)2 + (1)2 + (0)2 = (10)2. Ноль записывают, а единицу переносят в разряд восьмерок. Так, переходя от разряда к разряду (справа налево), постепенно получают все цифры суммы. В десятичной системе счисления указанный пример имеет вид: (341)10 + (115)10 = (456)10.
Таблица 1 - Сложение восьмеричных чисел
Первое слагаемое
Второеслагаемое
б
Пример сложения двух восьмеричных чисел:
11 — единицы переноса
(3447)8 — первое слагаемое
(7045)8 — второе слагаемое
________
(12514)8
Сложение начинают с разряда единиц: (7)8 + (5)8 = (14)8. Записывают цифру 4 под чертой, а единицу переносят в следующий разряд — разряд восьмерок. Переходят к разряду восьмерок:
(1)8 + (4)8+(4)8 = (5)8 + (4)8 = (11)8.
Одну единицу записывают, а другую переносят в следующий разряд. Переходя последовательно от разряда к разряду, определяют сумму (12514)8.
Умножение двоичных и восьмеричных чисел производится аналогично умножению десятичных чисел. При этом пользуются соответствующими таблицами умножения чисел в двоичной (табл. 2) и восьмеричной системах счисления.
Таблица 2 - Умножения двоичных чисел
Сомножители
Вычитание двоичных чисел производится так же, как и десятичных, т. е. последовательно по разрядам от младшего к старшему. Если из меньшей цифры в данном разряде вычитается большая, то производится заем единицы из следующего старшего разряда, т.е. цифра этого старшего разряда становится на единицу меньше.
В вычислительной технике операции вычитания обычно заменяются операциями сложения. Рассмотрим пример такой замены. Вместо того чтобы из числа 85 вычитать число 37, к числу 85 прибавляется число 63 = 100 - 37 (дополнительное к 37) и от результата 148 отнимается единица в старшем разряде. Получается число 48, которое является искомой разностью.
Аналогичным образом можно и в двоичной системе заменить вычитание сложением с использованием дополнительного кода. Саму операцию вычитания можно представить как сложение с отрицательным числом.
В вычислительной технике при использовании двоичной системы счисления крайний левый разряд служит для записи знака числа. Для положительного числа в этот разряд записывается 0, а для отрицательного — 1. Записанные таким образом двоичные числа будем называть записанными в прямом коде. Рассмотрим составление дополнительного кода к прямому коду отрицательного числа.
Дополнительный код отрицательных двоичных чисел формируется по следующему правилу. Сначала цифры всех разрядов кроме знакового инвертируют (вместо 0 записывают 1, а вместо 1 — 0) и в младший разряд добавляют единицу. Если в младшем разряде уже стоит единица, то при этом приходится изменять цифру в следующем, а, возможно, и в более старших разрядах. Например, при вычитании из числа 10110 числа 01101 уменьшаемое представляют как положительное число в прямом коле 010110, а вычитаемое — как отрицательное число, прямой код которого 101101 (полужирным шрифтом выделены цифры знакового разряда). Определяют дополнительный код вычитаемого. Сначала инвертируют цифры всех разрядов, кроме знакового (результат 110010), затем прибавляют единицу в младший разряд (110011). Выполняют операцию сложения уменьшаемого (в прямом коде) с вычитаемым (в дополнительном коде):
010110
+
110011
001001
Число 01001 и есть результат вычитания, полученный в прямом коде. При сложении цифры знаковых разрядов складывают с отбрасыванием возникающего из этого разряда переноса. В данном примере в результате вычитания получилось положительное число, поскольку в знаковом разряде стоит0. Это естественно, так как уменьшаемое больше вычитаемого. Если же из меньшего числа вычитать большее, то получается отрицательное число». Убедимся в этом на примере, из числа 01101 (в прямом коде 001101) вычтем 10110. Для этого определим дополнительный кол отрицательного числа 110110: сначала инвертируем цифры всех разрядов, кроме знакового (101001), потом добавим единицу в младший разряд (101010). Выполним сложение уменьшаемого в прямом коде и вычитаемого в дополнительном коде:
001101
+
101010
110111.
Результат есть отрицательное число (1 в знаковом разряде) и выражен он в дополнительном коде. Для получения его прямого кола убавим единицу в младшем разряде (110110), после чего инвертируем цифры всех разрядов, кроме знакового (101001). Правильность вычислений проверим на десятичных числах: (10110)2 =(22)10; (01101)2 =(13)10; (01001)2= (9)10; 22- 13 = 9; 13- 22 = -9.
При умножении двоичных многоразрядных чисел с учетом их знаков необходимо выполнить две операции: определить знак произведения и найти его абсолютную величину. Знаковый разряд может быть получен суммированием цифр знаковых разрядов сомножителей без формирования разряда переноса. При несовпадении складываемых цифр получается 1, что соответствует знаку произведения двух сомножителей с разными знаками. Абсолютная величина произведения определяется перемножением чисел без учета их знаком. Перемножение многоразрядных двоичных чисел производится с помощью таблицы 1. При умножении двух двоичных чисел множимое (первый сомножитель) последовательно умножают на каждую цифру множителя (второго сомножителя), начиная либо с младшего, либо со старшего разряда, и для учета веса соответствующей цифры множителя сдвигают либо влево (при начале умножения с младшего разряда множителя), либо вправо (при начале со старшего разряда) на такое число разрядов, на какое соответствующий разряд множителя сдвинут относительно младшего или старшего разряда. При умножении вручную на бумаге мы привыкли начинать с младшей цифры второго сомножителя. При этом результат умножения на цифру следующего разряда записываем левее предыдущего результата на один разряд, т.е. тем самым производим сдвиг влево. Результаты умножения первого сомножителя на каждую цифру второю сомножителя называют частичными произведениями или промежуточными суммами. Получающиеся в результате умножения и сдвига частичные произведения после суммирования дают полное произведение. Особенность умножения двоичных чисел состоит в том, что частичное произведение может быть либо сдвинутым на соответствующее число разрядов множимым, если соответствующая цифра множителя равна 1, либо нулем, если соответствующая цифра множителя равна 0. Рассмотрим пример:
10111 — множимое
х
1101 — множитель
10111 — первое частичное произведение
00000 второе частичное произведение
10111 — третье частичное произведение
10111 — четвертое частичное произведение
100101011 — произведение
Тот же результат можно получить при умножении, начиная со старших разрядов множителя:
х
____ 10111
100101011.
В цифровых устройствах процессу суммирования частичных произведений придают последовательный характер: формируется одно из частичных произведений, к нему с соответствующим сдвигом прибавляется следующее частичное произведение, к полученной сумме с соответствующим сдвигом Прибавляется очередное частичное произведение и так далее, пока не окажутся просуммированными вес частичные произведения и не будет получено полное произведение. Можно привести следующее обоснование тому, что умножение сводится к сдвигу и сложению. Пусть надо перемножить 101101 и 101101. Запишем это в такой форме: 101101 * 101101 = 101101(100000 + 1000+ 100+1)= 10110100000+ 101101000+ 10110100+ 101101. Таким образом, умножение па 100000 свелось к приписыванию пяти нулей (т.е. сдвигу на пять разрядов влево), на 1000 — трех (сдвиг на три разряда), на 100 — двух (сдвиг на два разряда). Иными словами, из первого сомножителя формируется столько частичных слагаемых, сколько единиц имеется во втором сомножителе. Сдвиг производится на столько разрядов влево, на каком месте (в каком разряде) находится соответствующая единица, минус один. Например, если единица есть в шестом разряде, сдвиг производится на пять разрядов, а если в четвертом, то на три. Если единица в первом разряде, то никакого сдвига делать не надо, в качестве одного из слагаемых берется сам первый сомножитель. Затем вес полученные частные слагаемые складываются. Операция деления в ЭВМ может быть сведена к нескольким операциям вычитаний и сдвигов. Результат деления (частное) определяется как число вычитаний с учетом сдвигов. Например, деление 132 : 11 = 12 можно осуществить в виде такой последовательности вычитаний и сдвигов:
-
110 -первое вычитание
220 - сдвиг
-
110 - первое вычитание
-
110 - второе вычитание
Ответ: 12 (одно вычитание до сдвига и два после).
Замена вычитания сложением остатка с дополнительным кодом вычитаемого сводит операцию деления к последовательности трех простейших операций.
Деление является весьма трудоемкой операцией. В ряде случаев и цифровых устройствах оно заменяется нахождением обратной величины делителя по специальной подпрограмме (на основе какой-либо быстро сходящейся итерационной формулы) и последующим умножением делимого на найденную обрапгую величину.
Иными словами, во многих машинах операция деления заменяется умножением, так как a/b = a(1/b). По числу b машина автоматически вычисляет число 1/b, которое затем умножается на a.
Довольно часто результат деления вычисляется не вполне точно, т.е. с некоторым приближением. Ведь деление без остатка не всегда возможно. В привычной нам десятичной системе это тоже часто бывает, Например, если разделить 2 на 3, то в ответе получится 0,666..., т.е. 6 в периоде. На практике принимают результат с округлением: 0,67, или 0,667, или 0,6667. Чем больше знаков после запятой, тем меньше ошибка вычисления.
Содержание отчета:
1. Оформить титульный лист в соответствии с СТП 1.2 – 2005.
2. В лабораторной работе необходимо отразить следующее:
А) Название лабораторной работы.
Б) Цель работы.
Г) Задание.
Д) Выполненная работа в соответствии с заданием.
Е) Ответы на контрольные работы.
Ж) Вывод.
3. Отчет необходимо оформить в папку.
Контрольные вопросы:
1.Что такое система счисления?
2.Как производится сложение двоичных чисел?
3.Как производится вычитание двоичных чисел?
4.Как производится умножение двоичных чисел?
5.Как производится перевод из 16, 10, 8 системах счисления в двоичную?
Практическая работа № 2
Тема:Кодирование чисел в прямом, обратном, дополнительном и модифицированном кодах.
Цель работы:Закрепить и систематизировать полученные знания по пройденной теме.
Задание:Ответить на контрольные вопросы. Выполнить действия по вариантам: 1 вариант – чётные по журналу; 2 – вариант нечётные по журналу. 1 вариант: А; 2 вариант: Б Выполнить Двоичное сложение в дополнительном коде: а) +3 и +8, -7 и +7, -5 и +8, б) +1 и +8, +2 и -5, -2 и -5
Пояснения к работе:
Прямой, обратный и дополнительный коды. Модифицированный код.
При рассмотрении элементарных арифметических операций над двоичными числами мы уже коснулись темы отрицательных двоичных чисел. Теперь рассмотрим ее подробнее.
Для кодирования знака двоичного числа используется старший ("знаковый") разряд (ноль соответствует плюсу, единица – минусу).
Такая форма представления числа называется прямым кодом.
В ЭВМ прямой код применяется только для представления положительных двоичных чисел. Для представления отрицательных чисел применяется либо дополнительный, либо обратный код, так как над отрицательными числами в прямом коде неудобно выполнять арифметические операции.
Правила для образования дополнительного и обратного кода состоят в следующем:
для образования дополнительного кода отрицательного числа необходимо в знаковом разряде поставить единицу, а все цифровые разряды инвертировать (заменить 1 на 0, а 0 – на 1), после чего прибавить 1 к младшему разряду;
для образования обратного кода отрицательного числа необходимо в знаковом разряде поставить единицу, а все цифровые разряды инвертировать;
при данных преобразованиях нужно учитывать размер разрядной сетки.
Прямой код можно получить из дополнительного и обратного по тем же правилам, которые служат для нахождения дополнительного и обратного кодов.
В таблице 1 пpиведены десятичные числа и их двоичные пpедставления в тpех pазличных фоpмах. Интеpесно в ней вот что. Если начать счет с числа 1000 (–8) и двигаться вниз по столбцам, то в дополнительном коде каждое последующее число получается пpибавлением единицы к пpедыдущему без учета пеpеноса за пpеделы четвеpтого pазpяда Так пpосто эту опеpацию в пpямом и обpатном кодах не осуществить. Эта особенность дополнительного кода и явилось пpичиной пpедпочтительного пpименения его в совpеменных микpо и мини ЭВМ.
Итак, числа, пpедставленные в дополнительном коде, складываются по пpавилам двоичного сложения, но без учета каких либо пеpеносов за пpеделы стаpшего pазpяда. Рассмотpим это на пpимеpах 1.
Таблица 1 Прямой, обратный и дополнительный коды
Десятичное
число
Прямой
код
Обратный
код
Дополнительный
код
-8
–
–
-7
-6
-5
-4
-3
-2
-1
Пример 1 Двоичное сложение в дополнительном коде
1) +2 0010 2) -2 1110 3) +5 01
+ +5 0101 + -6 1010 + -4 11
__________________ ______________ ____________
+7 0111 -8 1000 +1 00
Еще одним достоинством дополнительного кода является то, что нуль, в отличие от пpямого и обpатного кодов, пpедставляется одним кодом. Наличие 0 в знаковом бите пpи пpедставлении нуля опpеделяет его как величину положительную, что согласуется с математической теоpией чисел и соглашениями, пpинятыми во всех языках пpогpаммиpования.
Из приведенных примеров следует, что положительные числа в прямом, обратном и дополнительном кодах совпадают. В прямом и обратном коде нуль имеет два представления – «положительный» и «отрицательный» нуль.
Отметим, что при представлении с плавающей запятой отдельно кодируется мантисса и порядок числа. При этом возможно представление мантисс и порядков чисел в одном и том же или разных кодах. Например, порядок числа может быть представлен в прямом, а мантисса – в дополнительном кодах и т. п.
Таким образом, используя обратный и дополнительный коды, операцию алгебраического сложения можно свести к арифметическому сложению кодов чисел, которое распространяется и на разряды знаков, которые рассматриваются как разряды целой части числа.
При сложении чисел, меньших единицы, в машине быть получены числа, по абсолютной величине большие единицы. Для обнаружения переполнения разрядной сетки в ЭВМ применяются модифицированные прямой, обратный и дополнительный коды. В этих кодах знак кодируется двумя разрядами, причем знаку "плюс" соответствует комбинация 00, а знаку "минус" - комбинация 11.
Правила сложения для модифицированных кодов те же, что и для обычных. Единица переноса из старшего знакового разряда в модифицированном дополнительном коде отбрасывается, а в модифицированном обратном коде передается в младший цифровой разряд.
Признаком переполнения служит появление в знаковом разряде суммы комбинации 01 при сложении положительных чисел (положительное переполнение) или 10 при сложении отрицательных чисел (отрицательное переполнение). Старший знаковый разряд в этих случаях содержит истинное значение знака суммы, а младший является старшей значащей цифрой числа. Для коррекции переполнения число нужно сдвинуть в разрядной сетке на один разряд вправо, а в освободившийся старший знаковый разряд поместить цифру, равную новому значению младшего знакового разряда. После корректировки переполнения мантиссы результата необходимо увеличить на единицу порядок результата.
Содержание отчета:
3. Оформить титульный лист в соответствии с СТП 1.2 – 2005.
4. В лабораторной работе необходимо отразить следующее:
А) Название лабораторной работы.
Б) Цель работы.
Г) Задание.
Д) Выполненная работа в соответствии с заданием.
Е) Ответы на контрольные работы.
Ж) Вывод.
3. Отчет необходимо оформить в папку.
Контрольные вопросы:
1. Дайте определение модифицированного кода.
2. Перечислите правила для образования дополнительного и обратного и прямого кода.
Практическая работа №3
Тема:Выполнение арифметических операций с многоразрядными двоичными кодированными числами.
Цель работы:Закрепить и систематизировать полученные знания по пройденной теме.
Задание:Выполнить действия по вариантам: 1 вариант – чётные по журналу; 2 – вариант нечётные по журналу. 1 вариант: А; 2 вариант: Б.
А) Вычислить операцию сложения: 1) +14 и +6; 2) +7 и -11; 3) -8 и -12; 4) +45 и +51; 5) -61 и -92.
Б) Вычислить операцию сложения: 1) +13 и +5; 2) +6 и -14; 3) -9 и -11; 4) +52 и +49; 5) -75 и -98
Пояснения к работе:
Представление двоичных чисел в прямом, обратном и дополнительном кодах
Для определения знака числа в двоичном коде используются 0 и 1. Нулем кодируется знак "+", Единицей кодируется знак "-".
Для представления положительных и отрицательных чисел в вычислительной технике используются ПРЯМОЙ, ОБРАТНЫЙ и ДОПОЛНИТЕЛЬНЫЙ коды.
Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково - двоичными кодами с цифрой 0 в знаковом разряде. Например:
Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.
1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:
2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:
3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:
Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.
Пример: Представить число +7, -12, -15, -16 в прямом, обратном и дополнительном кодах.
Число
Прямой код
Обратный код
Дополнительный код
-12
1 0001100
1 1110011
1 1110100
-15
1 0001111
1 1110000
1 1110001
-16
1 0010000
1 1101111
1 1110000
При переводе из обратного в прямой код происходит инверсия цифр числа.
При переводе из дополнительного в прямой код происходит 1) инверсия цифр числа, 2)добавляется +1 в младший разряд инвертированного числа.
Арифметические действия над числами со знаком
В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение обратных или дополнительных кодов уменьшаемого и вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.
Сложение обратных кодов. Здесь при сложении чисел А и В имеют место четыре основных и два особых случая: