При использовании метода Ньютона наиболее трудоёмким является процесс вычисления обратной матрицы Якоби.
Если матрица невырождённая для некоторого приближения , и достаточно близко к (искомому решению), то можно использовать модифицированный метод Ньютона.
Дана система нелинейных уравнений:
или
(1)
Допустим, что систему 1 можно привести к виду:
(2)
Введём обозначения:
, ,
Можно систему уравнений 2 переписать в виде:
Приведённое матричное уравнение и есть формула метода итераций
Пусть функции и непрерывны в области , причём в области выполнимо неравенство:
где - некоторая константа.
Если последовательные приближения
,
не выходят из области , то этот процесс сходится к единственному решению системы.
Следствие:
оценка пиближённо
На практике лучше всего рассматривать матрицу с элементами
Для сходимости должно выполнятся условие
1)
2)
3)
Метод скорейшего спуска (градиентный метод)
Дана система линейных уравнений:
(1)
В матричном виде
Считаем, что действительны и непрерывно дифференцируемы в их общей области определения.
Рассмотрим функцию
(2)
Очевидно, что если мы найдём решение системы уравнений 1 , то это решение является и решением системы уравнений 2 и наоборот.
Предполагаем, что система 1 имеет лишь одно изолированное решение, представляющего собой точку строго минимум функции . Таким образом задача сводится к нахождению минимум функции в -мерном пространстве.
Берём точку - нулевое приближение. Через точку проходит поверхность уровня и . Если близка , то поверхность =будет похожа на элипсоид.
Из точки движемся по нормали к поверхности до тех пор, пока эта нормаль не коснётся другой поверхности:
И так далее.
Так как , то двигаясь таким образом, мы быстро приближаемся к точке с минимальным значением , которая соответствует некоему корню .