русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод Эйлера


Дата добавления: 2014-11-28; просмотров: 1019; Нарушение авторских прав


Это простейший метод решения задачи Коши, позволяющий решить дифференциальное уравнение первого порядка. Его точность невелика, поэтому на практике им пользуются редко. Однако на основе этого метода легче понять алгоритм других, более эффективных методов.

Метод Эйлера основан на разложении функции y в ряд Тейлора в окрестности x0:


Если h мало, то члены, содержащие производные второго и более высоких порядков, можно отбросить. Тогда .
y’(x0) находим из дифференциального уравнения, подставив в него начальное условие. Таким образом, можно получить приближённое значение y при малом смещении h от начальной точки x0. Этот процесс можно продолжить, используя следующую рекуррентную формулу:


Рис.17.2. Принцип метода Эйлера


yi+1=yi + hf(xi,yi), i=1,2,…

Графически метод Эйлера показан на рис.17.2. Ошибка метода имеет порядок h2.

Пример 1. Составим программу для решения дифференциального уравнения y¢=2x2+2y при начальном условии y(0)=1; 0£ x£1 и h=0,1.

Program Euler;

Uses Crt;

Var

xn,xk,yn,h,x,y:real;

i:integer;

 

Function f(x,y:real):real;

begin

{ Здесь приводим выражение для вычисления функции f(x,y) }

f:=2*x*x+2*y;

end;

 

Begin

ClrScr;

Writeln(' Решение дифференциального уравнения ');

Writeln(' dy/dx=2x^2+2y методом Эйлера ');

{ Ввод исходных данных }

xn:=0; yn:=1; xk:=1; h:=0.1;

{ Выводим шапку таблицы и первую точку }

Writeln('--------------------');

Writeln('| № | x | y |');

Writeln('--------------------');

{ Начинаем расчет }

x:=xn; y:=yn; i:=1;

Writeln('|', i:2, ' |', x:5:2, ' |', y:7:4, ' |');

Repeat

y:=y+h*f(x,y);

Writeln('|', i:2, ' |', x:5:2, ' |', y:7:4, ' |');

x:=x+h;

i:=i+1;

Until x>xk;

Writeln('--------------------');

Readln;

End.



<== предыдущая лекция | следующая лекция ==>
Решение обыкновенных дифференциальных уравнений численными методами | Модифицированный метод Эйлера


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.