русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод Монте-Карло. Бросание жребия. Реализация случайного опыта. Статистика модельных данных.


Дата добавления: 2014-11-28; просмотров: 767; Нарушение авторских прав


Основным методом решения вероятностных задач является метод статистических испытаний, или метод Монте – Карло (в честь рулеток Монте-Карло). Метод статистических испытаний заключается в моделировании случайных явлений в серии повторяющихся испытаний. В результате одного испытания получается экземпляр («реализация») случайного явления.

Метод Монте - Карло - основной принцип компьютерного моделирования систем, содержащих стохастические/вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг. Этот математический метод был известен и ранее, но свое второе название получил в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым названием «Монте-Карло». Применение метода оказалось настолько успешным, что он нашел применение и в других областях, в частности, в экономике.

В различных задачах могут использоваться величины, значения которых определяются случайным образом. Примерами таких величин являются:

• случайные моменты времени, в которые поступают заказы на фирму;

• время обслуживания клиента в магазине:

• загрузка производственных участков объекта экономики:

• оплата банковских кредитов:

• поступление средств от заказчика;

• ошибки измерений и т.д.

Одной из разновидностей метода Монте-Карло при численном решении задач, включающих случайные переменные, является метод статистических испытаний, который заключается в моделировании случайных событий в серии повторяющихся испытаний. В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения.

Наиболее распространенными являются следующие распределения вероятности непрерывных случайных величин: равномерное, показательное (экспоненциальное), нормальное, усеченное нормальное, логарифмически нормальное.



Розыгрыш/бросание жребия, можно осуществить вручную (простым выбором из таблицы случайных чисел), но удобнее это делать с помощью специальных программ, входящих в состав программного обеспечения ЭВМ. Такие программы называются датчиками, или генераторами, случайных чисел. В трансляторах почти всех алгоритмических языков имеются стандартные процедуры или функции, которые генерируют случайные (точнее, псевдослучайные) величины с равномерным распределением.

Например, в языке программирования Visual Basic имеется стандартная функция RND, возвращающая случайное вещественное число в диапазоне [0, 1]. В электронных таблицах Excel аналогичное действие выполняет функция СЛЧИС().



<== предыдущая лекция | следующая лекция ==>
Проверка адекватности (достоверности) модели. | Статистические выборки данных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.