В основу многих вероятностных моделей процессов и явлений могут быть положены законы распределения случайных величин. Например, известно, что относительная частота рождений младенцев мужского пола заметно не отличается от значения 0,515, если учтено достаточно большое число рождений. Эта частота не зависит от местности, где проводятся наблюдения, или от этнического состава населения. В свою очередь, если определять относительную частоту распада изотопа радия за 100 лет, то всегда будет получаться величина 0,04184.
Для очень многих событий установлены те или иные законы распределений. Например, распределение Пуассона применяют при исследовании рисков отказов оборудования, возникновения пожаров, производственных аварий, природных катастроф типа тайфунов, смерчей; распределения Вейбулла, Парето – при исследовании землетрясений, наводнений, извержений вулканов, крупных техногенных катастроф, катастрофических пожаров; гамма-распределение – при изучении риска смертельного травматизма, числа промышленных аварий и т.д.
В физике имеется масса примеров, которые связаны с оценкой состояния физических систем на основе определения вероятности событий, свойственных данным системам. Известно, что значения скоростей молекул подчиняются распределению Максвелла, ошибки наблюдений – нормальному распределению, случайные блуждания частиц – распределению арксинуса, сила притяжения (отталкивания), действующая на частицу газа, который представляет собой совокупность заряженных ионов – распределению Хольцмарка и т.д.
В системах телекоммуникаций замирания в канале связи при отсутствии прямой видимости между абонентом и базовой станцией имеют рэлеевский закон распределения; аддитивные помехи (шумы) часто описываются нормальным (гауссовским) законом распределения; временные интервалы между вызовами в телефонных сетях связи обычно имеют экспоненциальный закон распределения.
На практике часто приходится выбирать вид модельного распределения не имея достаточного объема данных, чтобы можно было бы проверить его адекватность. Выбор вида распределения обычно основывается на прошлом опыте, на знании механизма конкретного явления или на теоретических предпосылках.
3.1.1 Краткие сведения о распределениях вероятностей случайных величин
Известно, что основной вероятностной характеристикой случайных величин является плотность распределения вероятности. Для различных вероятностных распределений зависимости для определения плотности вероятности имеют вид:
, – для показательного закона распределения;
– для нормального (гауссова) закона распределения;
, – для пуассоновского закона распределения;
, , , – для закона распределения хи-квадрат (частный случай при – рэлеевское распределение - ;