Физические источники настоящих случайных чисел не отличаются многообразием. Шумы, такие как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучение могут быть источниками случайных чисел. Однако устройства, использующие эти явления, применяются редко. Более простым решением является создание некоторого набора из большого количества случайных чисел и опубликование его в некотором словаре в таблицах. Однако такие наборы обеспечивают ограничительные последовательности случайных чисел по сравнению с тем количеством, которое требуется на практических приложений.
Чаще всего используют для генерации случайных чисел различные алгоритмы. Эти алгоритмы заранее определены и, следовательно, генерируют последовательность чисел, которая теоретически не может быть статистически случайной. В то же время, если выбрать хороший алгоритм, полученная численная последовательность будет удовлетворять большинству тестов на случайность. Числа, генерируемые алгоритмами и удовлетворяющие статистическим критериям, называют псевдослучайными числами.
В основе моделирования случайных величин лежат методы имитационных случайных чисел с помощью генераторов.
Очевидно, что абсолютно случайные числа нельзя получить, используя определённый алгоритм. Однако можно создать такую последовательность чисел, которая будет обладать многими свойствами случайных чисел. Такие числа называются псевдослучайными. Впервые способы создания псевдослучайных чисел предложил Джон фон Нейман в 1946 г.
Генератор псевдослучайных чисел (ГПСЧ) представляет собой алгоритм, генерирующий некоторую последовательность чисел, которые почти независимы друг от друга и подчиняются заданному вероятностному распределению (обычно равномерному).
Современная информатика широко использует псевдослучайные числа в самых разных приложениях: в методе Монте-Карло, при имитационном моделировании, в криптографии и т.д. При этом от качества применяемых ГПСЧ напрямую зависит качество получаемых результатов.