русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Построение точечных и интервальных прогнозов.


Дата добавления: 2014-11-27; просмотров: 6196; Нарушение авторских прав


Идея социально-экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится и в прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называет­ся перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на сле­дующих предположениях:

а) развитие исследуемого явления в целом описывается плавной кривой;

б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;

в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Поэтому надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предполо­жения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы. Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t = n+1, п+2, …, n+к.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, ха­рактеризующих тенденцию, имеет малую вероятность. Возник­новение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единствен­но возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень об­ладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.



3. Тенденция характеризует движение среднего уровня ряда ди­намики, поэтому отдельные наблюдения могут от него откло­няться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(к), которая для линейной модели имеет вид

(3.10)

где

(3.11)

- стандартная ошибка (среднеквадратическое откло­нение от модели);

m - количество факторов в модели, для линейной моде­ли т = 1.

Коэффициент [7] является табличным значением t-статистики Стьюдента при заданном уровне значимости и числе наблюде­ний. Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n = 9 = 1,12. При вероятности, равной 95%, = 2,36.

Для других моделей величина U(к) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n + k и обратно пропорциональна объему наблюдений. Доверительный интервал прогноза будет иметь следующие границы:

• верхняя граница прогноза = Yпрогноз(n + к) + U(к);

• нижняя граница прогноза = Yпрогноз(n + к) - U(к).

Если построенная модель адекватна, то с выбранной пользова­телем вероятностью можно утверждать, что при сохранении сло­жившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

 

3.2. ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ EXCEL АНАЛИЗ ДАННЫХ ДЛЯ МОДЕЛИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

При решении задач рекомендуется использовать стандартную офисную программу Excel. Пакет анализа в Excel - это надстройка, которая предоставляет широкие возможности для проведения статистического анализа.

 

Установка Пакета анализа

Ни в одном меню стандартной конфигурации программы Excel вы не найдете указания на Пакет анализа. Даже после установки с компакт-диска Excel он не появится в меню Сервис до тех пор, пока вы не выполните следующие действия:

1) выберите команду Сервис => Надстройки;

2) в диалоговом окне Надстройки (рис. 3.2) установите флажок Пакет анализа, а затем нажмите кнопку 0К;

3) выберите команду Сервис => Анализ данных. Если в меню отсут­ствует команда Анализ данных, то необходимо выполнить установку Пакета анализа с компакт-диска Excel. После этого в нижней части меню Сервис появится новая команда Анализ данных, которая предоставляет доступ к средствам анализа. Для активизации надстройки Пакет анализа следует установить соответствующий флажок.

 

 

Пример 3.1. Проверка наличия тренда.

Один из способов проверки обнаружения тренда основан на сравнении средних уровней ряда: временной ряд разбивают на две примерно равные по числу уровней части, каждая из которых рассматривается как некоторая самостоятельная выборочная со­вокупность, имеющая нормальное распределение. Если времен­ной ряд имеет тенденцию к тренду, то средние, вычисленные для каждой совокупности, должны существенно (значимо) различаться между собой. Если же расхождение незначительно, несуществен­но (случайно), то временной ряд не имеет тенденции. Таким об­разом, проверка наличия тренда в исследуемом ряду сводится к проверке гипотезы о равенстве средних двух нормально распре­деленных совокупностей.

Определим наличие основной тенденции (тренда) по данным табл. 3.1 (рис. 3.3).

Таблица 3.1



<== предыдущая лекция | следующая лекция ==>
Оценка качества построенных моделей. | Решение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.177 сек.