На множестве всех последовательностей элементов множества X можно определить арифметические и другие операции, если таковые определены на множестве X. Такие операции обычно определяют естественным образом, т. е. поэлементно.
Пусть на множестве X определена N-арная операция f:
Тогда для элементов , , …, множества всех последовательностей элементов множестваXоперация f будет определяться следующим образом:
|
Например, так определяются арифметические операции для числовых последовательностей.
Суммой числовых последовательностей (xn) и (yn) называется числовая последовательность (zn) такая, что zn = xn + yn.
Разностью числовых последовательностей (xn) и (yn) называется числовая последовательность (zn) такая, что zn = xn − yn.
Произведением числовых последовательностей xn и yn называется числовая последовательность (zn) такая, что
.
Частным числовой последовательности xn и числовой последовательности yn, все элементы которой отличны от нуля, называется числовая последовательность
. Если в последовательности yn на позиции
всё же имеется нулевой элемент, то результат деления на такую последовательность всё равно может быть определён, как последовательность
.
Конечно, арифметические операции могут быть определены не только на множестве числовых последовательностей, но и на любых множествах последовательностей элементов множеств, на которых определены арифметические операции, будь то поля или даже кольца.